点此搜书

Lectures on Hyperbolic Geometry
  • 作 者:Riccardo Benedetti,Carlo Pertronio
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2012
  • ISBN:7510046322
  • 标注页数:334 页
  • PDF页数:349 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

11

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源349 ≥334页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

Chapter A.Hyperbolic Space 1

A.1 Models for Hyperbolic Space 1

A.2 Isometries of Hyperbolic Space:Hyperboloid Model 3

A.3 Conformal Geometry 7

A.4 Isometries of Hyperbolic Space:Disc and Half-space Models 22

A.5 Geodesics,Hyperbolic Subspaces and Miscellaneous Facts 25

A.6 Curvature of Hyperbolic Space 37

Chapter B.Hyperbolic Manifolds and the Compact Two-dimensional Case 45

B.1 Hyperbolic,Elliptic and Flat Manifolds 45

B.2 Topology of Compact Oriented Surfaces 55

B.3 Hyperbolic,Elliptic and Flat Surfaces 58

B.4 Teiehmüller Space 61

Chapter C.The Rigidity Theorem(Compact Case) 83

C.1 First Step of the Proof:Extension of Pseudo-isometries 84

C.2 Second Step of the Proof:Volume of Ideal Simplices 94

C.3 Gromov Norm of a Compact Manifold 103

C.4 Third Step of the Proof:the Gromov Norm and the Volume Are Proportional 105

C.5 Conclusion of the Proof,Corollaries and Generalizations 121

Chapter D.Margulis'Lemma and its Applications 133

D.1 Margulis'Lemma 133

D.2 Local Geometry of a Hyperbolic Manifold 140

D.3 Ends of a Hyperbolic Manifold 143

Chapter E.The Space of Hyperbolic Manifolds and the Volume Function 159

E.1 The Chabauty and the Geometric Topology 160

E.2 Convergence in the Geometric Topology:Opening Cusps The Case of Dimension at least Three 174

E.3 The Case of Dimension Different from Three Conclusions and Examples 184

E.4 The Three-dimensional Case:Jorgensen's Part of the So-called Jorgensen-Thurston Theory 190

E.5 The Three-dimensional Case.Thurston's Hyperbolic Surgery Theorem:Statement and Preliminaries 196

E.5-ⅰ Definition and First Properties of T3(Non-compact Three-manifolds with"Triangulation"Without Vertices) 198

E.5-ⅱ Hyperbolic Structures on an Element of T3 and Realization of the Complete Structure 201

E.5-ⅲ Elements of T3 and Standard Spines 207

E.5-ⅳ Some Links Whose Complements are Realized as Elements of T3 210

E.6 Proof of Thurston's Hyperbolic Surgery Theorem 223

E.6-ⅰ Algebraic Equations of H(M)(Hyperbolic Structures Supported by M∈T3) 224

E.6-ⅱ Dimension of H(M):General Case 234

E.6-ⅲ The Case M is Complete Hyperbolic:the Space of Deformations 251

E.6-ⅳ Completion of the Deformed Hyperbolic Structures and Conclusion of the Proof 256

E.7 Applications to the Study of the Volume Function and Complements about Three-dimensional Hyperbolic Geometry 267

Chapter F.Bounded Cohomology,a Rough Outline 273

F.1 Singular Cohomology 273

F.2 Bounded Singular Cohomology 277

F.3 Flat Fiber Bundles 280

F.4 Euler Class of a Flat Vector Bundle 287

F.5 Flat Vector Bundles on Surfaces and the Milnor-Sullivan Theorem 294

F.6 Sullivan's Conjecture and Amenable Groups 303

Subject Index 321

Notation Index 324

Referenees 326

购买PDF格式(11分)
返回顶部