
- 作 者:Neil Chriss著
- 出 版 社:世界图书出版公司北京公司
- 出版年份:2012
- ISBN:7510040573
- 标注页数:495 页
- PDF页数:509 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源509 ≥495页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Chapter 0.Introduction 1
Chapter 1.Symplectic Geometry 21
1.1. Symplectic Manifolds 21
1.2. Poisson Algebras 24
1.3. Poisson Structures arising from Noncommutative Algebras 26
1.4. The Moment Map 41
1.5. Coisotropic Subvarieties 49
1.6. Lagrangan Families 57
Chapter 2.Mosaic 61
2.1. Hilbert's Nullstellensatz 61
2.2. Affine Algebraic Varieties 63
2.3. The Deformation Construction 73
2.4. C-actions on a projective variety 81
2.5. Fixed Point Reduction 90
2.6. Borel-Moore Homology 93
2.7. Convolution in Borel-Moore Homology 110
Chapter 3.Complex Semisimple Groups 127
3.1. Semisimple Lie Algebras and Flag Varieties 127
3.2. Nilpotent Cone 144
3.3. The Steinberg Variety 154
3.4. Lagrangian Construction ofthe Weyl Group 161
3.5. Geometric Analysis of H(Z)-action 168
3.6. Irreducible Representations of Weyl Groups 175
3.7. Applications of the Jacobson-Morozov Theorem 183
Chapter 4.Springer Theory for U(s ln) 193
4.1. Geometric Construction of the Enveloping Algebra U(sln(C)) 193
4.2. Finite-Dimensional Simplesln(C)-Modules 199
4.3. Proofof the Main Theorem 206
4.4. Stabilization 214
Chapter 5.Equivariant K-Theory 231
5.1. Equivariant Resolutions 231
5.2. Basic K-Theoretic Constructions 243
5.3. Specialization in Equivariant K-Theory 254
5.4. The Koszul Complex and the Thom Isomorphism 260
5.5 Cellular Fibration Lemma 269
5.6. The Kiinneth Formula 273
5.7. Projective Bundle Theorem and Beilinson Resolution 276
5.8. The Chern Character 280
5.9. The Dimension Filtration and“Devissage” 286
5.10. The Localization Theorem 292
5.11. Functoriality 296
Chapter 6.Flag Varieties,K-Theory,and Harmonic Polynomials 303
6.1. Equivariant K-Theory of the Flag Variety 303
6.2. Equivariant K-Theory of the Steinberg Variety 311
6.3. Harmonic Polynomials 315
6.4. W-Harmonic Polynomials and Flag Varieties 321
6.5. Orbital Varieties 329
6.6. The Equivariant Hilbert Polynomial 335
6.7. Kostant's Theorem on Polynomial Rings 346
Chapter 7.Hecke Algebras and K-Theory 361
7.1. AffineWeyl Groups and Hecke Algebras 361
7.2. Main Theorems 366
7.3. Case q=1:Deformation Argument 370
7.4. Hilbert Polynomials and Orbital Varieties 383
7.5. The Hecke Algebra for SL2 389
7.6. Proof of the Main Theorem 395
Chapter 8.Representations of Convolution Algebras 411
8.1. Standard Modules 411
8.2. Character Formula for Standard modules 418
8.3. Constructible Complexes 421
8.4. Perverse Sheaves and the Classification Theorem 433
8.5. The Contravariant Form 438
8.6. Sheaf-Theoretic Analysis of the Convolution Algebra 445
8.7. Projective Modules over Convolution Algebra 460
8.8. A Non-Vanishing Result 468
8.9. Semi-Small Maps 479
Bibliography 487