
- 作 者:(美)斯廷罗德(Steenrod,N.)著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2011
- ISBN:9787510029561
- 标注页数:229 页
- PDF页数:240 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源240 ≥229页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Part Ⅰ.THE GENERAL THEORY OF BUNDLES 3
1.Introduction 3
2.Coordinate bundles and fibre bundles 6
3.Construction of a bundle from coordinate transformations 14
4.The product bundle 16
5.The Ehresmann-Feldbau definition of bundle 18
6.Differentiable manifolds and tensor bundles 20
7.Factor spaces of groups 28
8.The principal bundle and the principal map 35
9.Associated bundles and relative bundles 43
10.The induced bundle 47
11.Homotopies of maps of bundles 49
12.Construction of cross-sections 54
13.Bundles having a totally disconnected group 59
14.Covering spaces 67
Part Ⅱ.THE HOMOTOPY THEORY OF BUNDLES 72
15.Homotopy groups 72
16.The operations of π1 on πn 83
17.The homotopy sequence of a bundle 90
18.The classification of bundles over the n-sphere 96
19.Universal bundles and the classification theorem 100
20.The fibering of spheres by spheres 105
21.The homotopy groups of spheres 110
22.Homotopy groups of the or thogonal groups 114
23.A characteristic map for the bundle Rn+1 over Sn 118
24.A characteristic map for the bundle Un over S2n-1 124
25.The homotopy groups of miscellaneous manifolds 131
26.Sphere bundles over spheres 134
27.The tangent bundle of Sn 140
28.On the non-existence of fiberings of spheres by spheres 144
Part Ⅲ.THE COHOMOLOGY THEORY OF BUNDLES 148
29.The stepwise extension of a cross-section 148
30.Bundles of coefficients 151
31.Cohomology groups based on a bundle of coefficients 155
32.The obstruction cocycle 166
33.The difference cochain 169
34.Extension and deformation theorems 174
35.The primary obstruction and the characteristic cohomology class 177
36.The primary difference of two cross-sections 181
37.Extensions of functions,and the homotopy classification of maps 184
38.The Whitney characteristic classes of a sphere bundle 190
39.The Stiefel characteristic classes of differentiable manifolds 199
40.Quadratic forms on manifolds 204
41.Complex analytic manifolds and exterior forms of degree 2 209
Appendix 218
Bibliography 223
Index 228