点此搜书

组合凸性和代数几何
  • 作 者:埃瓦尔德(GunterEwald)著
  • 出 版 社:世界图书出版公司北京公司
  • 出版年份:2011
  • ISBN:9787510037566
  • 标注页数:374 页
  • PDF页数:389 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

12

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源389 ≥374页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

Part 1 Combinatorial Convexity 3

Ⅰ.Convex Bodies 3

1.Convex sets 3

2.Theorems of Radon and Carathéodory 8

3.Nearest point map and supporting hyperplanes 11

4.Faces and normal cones 14

5.Support function and distance function 18

6.Polar bodies 24

Ⅱ.Combinatorial theory of polytopes and polyhedral sets 29

1.The boundary complex of a polyhedral set 29

2.Polar polytopes and quotient polytopes 35

3.Special types of polytopes 40

4.Linear transforms and Gale transforms 45

5.Matrix representation of transforms 53

6.Classification of polytopes 58

Ⅲ.Polyhedral spheres 65

1.Cell complexes 65

2.Stellar operations 70

3.The Euler and the Dehn-Sommerville equations 78

4.Schlegel diagrams,n-diagrams,and polytopality of spheres 84

5.Embedding problems 88

6.Shellings 92

7.Upper bound theorem 96

Ⅳ.Minkowski sum and mixed volume 103

1.Minkowski sum 103

2.Hausdorff metric 107

3.Volume and mixed volume 115

4.Further properties of mixed volumes 120

5.Alexandrov-Fenchel's inequality 129

6.Ehrhart's theorem 135

7.Zonotopes and arrangements of hyperplanes 138

Ⅴ .Lattice polytopes and fans 143

1.Lattice cones 143

2.Dual cones and quotient cones 148

3.Monoids 154

4.Fans 158

5.The combinatorial Picard group 167

6.Regular stellar operations 179

7.Classification problems 186

8.Fano polytopes 192

Part 2 Algebraic Geometry 199

Ⅵ.Toric varieties 199

1.Ideals and affine algebraic sets 199

2.Affine toric varieties 214

3.Toric varieties 224

4.Invariant toric subvarieties 234

5.The torus action 238

6.Toric morphisms and fibrations 242

7.Blowups and blowdowns 248

8.Resolution of singularities 252

9.Completeness and compactness 257

Ⅶ.Sheaves and projective toric varieties 259

1.Sheaves and divisors 259

2.Invertible sheaves and the Picard group 267

3.Projective toric varieties 273

4.Support functions and line bundles 281

5.Chow ring 287

6.Intersection numbers.Hodge inequality 290

7.Moment map and Morse function 296

8.Classification theorems.Toric Fano varieties 303

Ⅷ.Cohomology of toric varieties 307

1.Basic concepts 307

2.Cohomology ring of a toric variety 314

3.?ech cohomology 317

4.Cohomology of invertible sheaves 320

5.The Riemann-Roch-Hirzebruch theorem 324

Summary:A Dictionary 329

Appendix Comments,historical notes,further exercises,research problems,suggestions for further reading 331

References 343

List of Symbols 359

Index 363

购买PDF格式(12分)
返回顶部