购买云解压PDF图书

当前位置: 计算机体系结构 量化研究方法 英文版 第5版 > 购买云解压PDF图书
计算机体系结构  量化研究方法  英文版  第5版
  • 作 者:(美)亨尼西等著
  • 出 版 社:北京:机械工业出版社
  • 出版年份:2012
  • ISBN:9787111364580
  • 注意:在使用云解压之前,请认真核对实际PDF页数与内容!

在线云解压

价格(点数)

购买连接

说明

转为PDF格式

21

立即购买

(在线云解压服务)

云解压服务说明

1、本站所有的云解压默认都是转为PDF格式,该格式图书只能阅读和打印,不能再次编辑。

云解压下载及付费说明

1、所有的电子图书云解压均转换为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、云解压在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

Chapter 1 Fundamentals of Quantitative Design and Analysis 2

1.1 Introduction 2

1.2 Classes of Computers 5

1.3 Defining Computer Architecture 11

1.4 Trends in Technology 17

1.5 Trends in Power and Energy in Integrated Circuits 21

1.6 Trends in Cost 27

1.7 Dependability 33

1.8 Measuring, Reporting, and Summarizing Performance 36

1.9 Quantitative Principles of Computer Design 44

1.10 Putting It All Together: Performance, Price, and Power 52

1.11 Fallacies and Pitfalls 55

1.12 Concluding Remarks 59

1.13 Historical Perspectives and References 61

Case Studies and Exercises by Diana Franklin 61

Chapter 2 Memory Hierarchy Design 72

2.1 Introduction 72

2.2 Ten Advanced Optimizations of Cache Performance 78

2.3 Memory Technology and Optimizations 96

2.4 Protection: Virtual Memory and Virtual Machines 105

2.5 Crosscutting Issues: The Design of Memory Hierarchies 112

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 113

2.7 Fallacies and Pitfalls 125

2.8 Concluding Remarks: Looking Ahead 129

2.9 Historical Perspective and References 131

Case Studies and Exercises by Norman P. Jouppi,Naveen Muralimanohar, and Sheng Li 131

Chapter 3 Instruction-Level Parallelism and Its Exploitation 148

3.1 Instruction-Level Parallelism: Concepts and Challenges 148

3.2 Basic Compiler Techniques for Exposing ILP 156

3.3 Reducing Branch Costs with Advanced Branch Prediction 162

3.4 Overcoming Data Hazards with Dynamic Scheduling 167

3.5 Dynamic Scheduling: Examples and the Algorithm 176

3.6 Hardware-Based Speculation 183

3.7 Exploiting ILP Using Multiple Issue and Static Scheduling 192

3.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, andSpeculation 197

3.9 Advanced Techniques for Instruction Delivery and Speculation 202

3.10 Studies of the Limitations of ILP 213

3.11 Cross-Cutting Issues: ILP Approaches and the Memory System 221

3.12 Multithreading: Exploiting Thread-Level Parallelism to ImproveUniprocessor Throughput 223

3.13 Putting It All Together: The Intel Core i7 and ARM Cortex-A8 233

3.14 Fallacies and Pitfalls 241

3.15 Concluding Remarks: What's Ahead? 245

3.16 Historical Perspective and References 247

Case Studies and Exercises by Jason D. Bakos and Robert P Colwell 247

Chapter4 Data-Level Parallelism in Vector, SIMD, and GPU Architectures 262

4.1 Introduction 262

4.2 Vector Architecture 264

4.3 SIMD Instruction Set Extensions for Multimedia 282

4.4 Graphics Processing Units 288

4.5 Detecting and Enhancing Loop-Level Parallelism 315

4.6 Crosscutting Issues 322

4.7 Putting It All Together: Mobile versus Server GPUs and Tesla versus Core i7 323

4.8 Fallacies and Pitfalls 330

4.9 Concluding Remarks 332

4.10 Historical Perspective and References 334

Case Study and Exercises by Jason D. Bakos 334

Chapter 5 Thread-Level Parallelism 344

5.1 Introduction 344

5.2 Centralized Shared-Memory Architectures 351

5.3 Performance of Symmetric Shared-Memory Multiprocessors 366

5.4 Distributed Shared-Memory and Directory-Based Coherence 378

5.5 Synchronization: The Basics 386

5.6 Models of Memory Consistency: An Introduction 392

5.7 Crosscutting Issues 395

5.8 Putting It All Together: Multicore Processors and Their Performance 400

5.9 Fallacies and Pitfalls 405

5.10 Concluding Remarks 409

5.11 Historical Perspectives and References 412

Case Studies and Exercises by Amr Zaky and David A. Wood 412

Chapter6 Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism 432

6.1 Introduction 432

6.2 Programming Models and Workloads for Warehouse-Scale Computers 436

6.3 Computer Architecture of Warehouse-Scale Computers 441

6.4 Physical Infrastructure and Costs of Warehouse-Scale Computers 446

6.5 Cloud Computing: The Return of Utility Computing 455

6.6 Crosscutting Issues 461

6.7 Putting It All Together: A Google Warehouse-Scale Computer 464

6.8 Fallacies and Pitfalls 471

6.9 Concluding Remarks 475

6.10 Historical Perspectives and References 476

Case Studies and Exercises by Parthasarathy Ranganathan 476

购买PDF格式(21分)
返回顶部