购买云解压PDF图书

当前位置: 代数方程的根式解及伽罗瓦理论 > 购买云解压PDF图书
代数方程的根式解及伽罗瓦理论
  • 作 者:谢彦麟编著
  • 出 版 社:哈尔滨:哈尔滨工业大学出版社
  • 出版年份:2011
  • ISBN:9787560332338
  • 注意:在使用云解压之前,请认真核对实际PDF页数与内容!

在线云解压

价格(点数)

购买连接

说明

转为PDF格式

8

立即购买

(在线云解压服务)

云解压服务说明

1、本站所有的云解压默认都是转为PDF格式,该格式图书只能阅读和打印,不能再次编辑。

云解压下载及付费说明

1、所有的电子图书云解压均转换为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、云解压在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

第一章 排列与置换 1

第二章 置换群 5

第三章 数域,代数扩域 13

第四章 代数方程的根域 18

第五章 代数方程的Galois群 26

第六章 用Galois群的不变式导出Lagrange预解方程从而推出三、四次方程的求根公式 35

第七章 循环方程 44

第八章 用不可约方根表示单位根,用直尺、圆规把圆分为Fermat(费尔马)素数等份 57

第九章 代数方程的多层根式解 75

第十章 判定代数方程可用多层二次根式解出的准则 87

第十一章 圆规、直尺作图的可能性 94

第十二章 Galois理论基本定理——代数方程可用根式解的判定准则 106

第十三章 至少五次的代数方程不存在用多层根式表示的求根公式(卢芬尼-亚贝尔(Ruffni-Abel)定理) 121

第十四章 实域上素数次不可约方程无多层根式解的充分条件 132

附录Ⅰ 构造三、四次偶群表及三、四次对称群Sn的真子群(指标小于n) 135

附录Ⅱ 数论预备知识 139

附录Ⅲ 求实系数多项式的实根个数 147

附录Ⅳ 检验不超过五次的有理系数多项式的可约性 151

参考文献 155

购买PDF格式(8分)
返回顶部