点此搜书

当前位置:图论基础pdf电子书下载 > 数理化
图论基础
  • 作 者:张海良,苏岐芳,林荣斐编著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2011
  • ISBN:9787302241638
  • 标注页数:115 页
  • PDF页数:122 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

7

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源122 ≥115页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

Chapter 1 Basic concepts 1

1.1 Graph and simple graph 1

1.2 Graph operations 3

1.3 Isomorphism 7

1.4 Incident and adjacent matrix 7

1.5 The spectrum of graph 10

1.6 The spectrum of several graphs 16

1.7 Results from matrix theory 19

1.8 About the largest zero of characteristic polynomials 22

1.9 Spectrum radius 28

Chapter 2 path and cycle 30

2.1 The path 30

2.2 The cycle 33

2.3 The diameter of a graph and its complement graph 36

Chapter 3 Tree 39

3.1 Tree 39

3.2 Spanning tree 41

3.3 A bound for the tree number of regular graphs 47

3.4 Cycle space and bound space of a graph 48

Chapter 4 Connectivity 51

4.1 Cut edges 51

4.2 Cut vertex 52

4.3 Block 55

4.4 Connectivity 57

Chapter 5 Euler and Hamilton graphs 60

5.1 Euler path and circuits 60

5.2 Hamilton graph 62

Chapter 6 Matching and matching polynomial 66

6.1 Matching 66

6.2 Bipartite graph and perfect matching 67

6.3 Matching polynomial 69

6.4 The relation between spectrum and matching polynomial 72

6.5 Relation between several graphs 74

6.6 Several matching equivalent and matching unique graphs 75

6.7 The Hosoya index of several graphs 76

6.8 Two trees with minimal Hosoya index 79

6.9 Recent results in matching 83

Chapter 7 Laplacian and Quasi-Laplacian spectrum 85

7.1 Sigma function 85

7.2 The spanning tree and sigma function 87

7.3 Quasi-Laplacian Spectrum 88

7.4 Basic lemmas 89

7.5 Main results 90

7.6 Three different spectrum of regular graphs 96

Chapter 8 More theorems form matrix theory 100

8.1 The irreducible matrix 100

8.2 Cauchy's interlacing theorem 102

8.3 The eigenvalues of A(G)and graph structure 103

Chapter 9 Chromatic polynomial 105

9.1 Induction 105

9.2 Two different formula for chromatic polynomial 107

9.3 Chromatic polynomials for several type of graphs 109

9.4 Estimate the color number 110

References 112

Bibliography 115

购买PDF格式(7分)
返回顶部