点此搜书

迁移学习  理论与实践
  • 作 者:邵浩著
  • 出 版 社:上海:上海交通大学出版社
  • 出版年份:2013
  • ISBN:9787313106568
  • 标注页数:121 页
  • PDF页数:130 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

7

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源130 ≥121页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

Chapter 1 Introduction 1

1.1 Background and Motivation 1

1.2 Contributions 5

1.2.1 Extended MDLP for Transfer Learning 5

1.2.2 Compact Coding for Hyperplane Classifiers in Transfer Learning 6

1.2.3 Transfer Active Learning 7

1.2.4 Gaussian Process for Transfer Learning 8

1.3 Book Overview 9

Chapter 2 Literature Review and Preliminaries for MDLP 10

2.1 Transfer Learning 10

2.2 Active Learning and Transfer Active Learning 13

2.3 Preliminaries for MDLP 14

Chapter 3 Extended MDL Principle for Feature-based Transfer Learning 17

3.1 Introduction 17

3.2 Problem Statement 20

3.3 Preliminaries for Encoding 21

3.3.1 Theoretical Foundation of the EMDLP 22

3.3.2 Adaptation of the EMDLP to Our Problem 25

3.4 Supervised Inductive Transfer Learning Algorithm 30

3.4.1 EMDLP with Incremental Search 30

3.4.2 EMDLP with Hill Climbing 33

3.5 Experiments 36

3.5.1 Experimental Settings 36

3.5.2 Experimental Results on Synthetic Data Sets 40

3.5.3 Experimental Results on Real Data Sets 45

3.6 Summary 52

Chapter 4 Compact Coding for Hyperplane Classifiers in a Heterogeneous Environment 53

4.1 Introduction 53

4.2 Problem Setting 55

4.3 Compact Coding for Hyperplane Classifiers in Heterogeneous Environment 56

4.3.1 Macro Level:Arrange Related Tasks 57

4.3.2 Micro Level Evaluation 61

4.3.3 The Transfer Learning Algorithm 62

4.4 Experiments 63

4.4.1 Experimental Setting 63

4.4.2 Experimental Results 65

4.5 Summary 71

Chapter 5 Adaptive Transfer Learning with Query by Committee 72

5.1 Introduction 72

5.2 Problem Setting and Preliminaries 75

5.3 Probabilistic Framework for ALTL 78

5.4 The ALTL Algorithm and Analysis 81

5.4.1 The Procedure of ALTL 81

5.4.2 Termination Condition and Analysis 83

5.5 Experiments 85

5.5.1 Experimental Setting 85

5.5.2 Results on Synthetic Data Sets 85

5.5.3 Results on Real Data Sets 89

5.6 Summary 93

Chapter 6 Gaussian Process for Transfer Learning through Minimum Encoding 94

6.1 Introduction 94

6.2 Gaussian Process for Classification 96

6.3 The GPTL Algorithm 97

6.3.1 Arrange Related Tasks 97

6.3.2 The Instance Level Similarities 99

6.4 Experiments 100

6.5 Summary 104

Chapter 7 Concluding Comments 106

Appendix A Target Concepts in Chapter 3 110

Bibliography 113

购买PDF格式(7分)
返回顶部