点此搜书

当前位置:计算方法pdf电子书下载 > 数理化
计算方法
  • 作 者:李铭明,江开忠主编
  • 出 版 社:上海:东华大学出版社
  • 出版年份:2013
  • ISBN:9787566903235
  • 标注页数:270 页
  • PDF页数:279 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

10

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源279 ≥270页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

第一章 绪论 1

1.1 计算方法课程的基本概念 1

1.2 误差的基本概念 3

1.2.1 误差及分类 3

1.2.2 绝对误差与相对误差 3

1.2.3 有效数字 4

1.3 设计算法的注意问题 6

1.3.1 选用稳定的算法 6

1.3.2 注意简化计算步骤,减少运算次数 8

1.3.3 要避免两个相近数相减 9

1.3.4 要避免除数绝对值远远小于被除数绝对值的除法 10

1.3.5 要注意浮点运算的特点,防止大数“吃掉”小数 11

1.3.6 计算过程中应十分小心地处理病态的数学问题 11

1.4 向量与矩阵的范数 12

1.4.1 向量范数 12

1.4.2 矩阵范数 15

1.5 软件MATLAB介绍 19

1.5.1 MATLAB的工作环境 19

1.5.2 搜索路径与扩展 21

1.5.3 MATLAB的帮助系统 21

1.5.4 MATLAB绘图及程序设计 22

第二章 插值法 29

2.1 插值法的基本概念 29

2.2 函数插值逼近 30

2.2.1 拉格朗日插值法 30

2.2.2 牛顿插值公式 36

2.2.3 埃尔米特(Hermite)插值 43

2.2.4 分段低次插值 47

2.2.5 三次样条插值 50

2.3 数值积分的插值型求积公式 55

2.3.1 梯形公式、辛普生公式与柯特斯公式 55

2.3.2 龙贝格求积公式 62

2.3.3 高斯型求积公式 65

2.3.4 重积分数值求积公式 68

2.4 数值微分的插值型求导公式 71

2.4.1 两点公式 72

2.4.2 三点公式 72

第三章 逼近法 76

3.1 函数逼近 76

3.1.1 函数逼近的基本概念 76

3.1.2 正交多项式 80

3.1.3 最佳一致逼近 86

3.1.4 最佳平方逼近 90

3.2 曲线拟合的最小二乘法 94

3.2.1 基本原理 94

3.2.2 线性最小二乘拟合 95

3.2.3 非线性最小二乘拟合 100

3.3 超定方程组的最小二乘解 102

第四章 矩阵分解法 106

4.1 矩阵分解 106

4.1.1 矩阵的三角分解 106

4.1.2 矩阵的QR分解 117

4.1.3 矩阵的SVD分解 129

4.2 线性方程组的直接算法 132

4.2.1 直接三角分解法 133

4.2.2 平方根法(Cholesky分解) 134

4.2.3 三对角方程组 135

4.3 矩阵特征值问题计算 137

4.3.1 引言 137

4.3.2 雅可比方法 142

4.3.3 QR方法 147

第五章 迭代法 160

5.1 迭代法的基本概念 160

5.2 线性方程组迭代数值解 162

5.2.1 雅可比迭代法 163

5.2.2 高斯-赛德尔迭代法 164

5.2.3 超松弛迭代法 167

5.3 非线性方程迭代数值解 183

5.3.1 迭代法及其收敛性 184

5.3.2 迭代法的加速收敛 192

5.3.3 牛顿(Newton)迭代法 197

5.3.4 非线性方程组数值解 204

5.4 矩阵的特征值与特征向量迭代数值解 211

5.4.1 幂法 211

5.4.2 反幂法 219

第六章 泰勒展式法 226

6.1 Taylor公式 226

6.1.1 一元函数的Taylor公式 226

6.1.2 多元函数的Taylor公式 228

6.2 数值微分 228

6.2.1 差商公式 229

6.2.2 变步长中点方法 230

6.2.3 Richardson外推加速法 231

6.3 龙贝格数值积分 232

6.3.1 梯形公式的余项展开式 233

6.3.2 龙贝格算法 237

6.4 常微分方程初值问题数值解法 244

6.4.1 泰勒级数法 244

6.4.2 欧拉(Euler)方法 246

6.4.3 龙格-库塔法 251

6.4.4 线性多步法 257

6.4.5 一阶微分方程组与高阶微分方程的数值解法 261

习题答案 266

参考文献 270

购买PDF格式(10分)
返回顶部