点此搜书

黎曼曲面上的流代数
  • 作 者:(俄罗斯)沙因曼,O.K著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2016
  • ISBN:9787510076510
  • 标注页数:150 页
  • PDF页数:164 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

7

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源164 ≥150页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

1 Krichever-Novikov algebras:basic definitions and structure theory 1

1.1 Current,vector field,and other Krichever-Novikov algebras 1

1.2 Meromorphic λ-forms and Krichever-Novikov duality 2

1.3 Krichever-Novikov bases 4

1.4 Almost-graded structure,triangledecompositions 6

1.5 Central extensions and 2-cohomology;Virasoro-type algebras 9

1.6 Affine Krichever-Novikov,in particular Kac-Moody,algebras 13

1.7 Central extensions ofthe Lie algebra D? 15

1.8 Local cocycles for?(n)and g?(n) 16

2 Fermion representations and Sugawara construction 19

2.1 Admissible representations and holomorphic bundles 19

2.2 Holomorphic bundles in the Tyurin parametrization 21

2.3 Krichever-Novikov bases for holomorphic vector bundles 23

2.4 Fermion representations of affine algebras 26

2.5 Verma modules for affine algebras 29

2.6 Fermion representations of Virasoro-type algebras 31

2.7 Sugawara representation 34

2.8 Proof of the main theorems for the Sugawara construction 39

2.8.1 Main theorems in the form of relations with structure constants 40

2.8.2 End ofthe proof ofthe main theorems 43

3 Projective fiat connections on the moduli space of punctured Riemann surfaces and the Knizhnik-Zamolodchikov equation 55

3.1 Virasoro-type algebras and moduli spaces of Riemann surfaces 56

3.2 Sheaf of conformal blocks and other sheaves on the moduli space M? 62

3.3 Differentiation of the Krichever-Novikov objects in modular variables 63

3.4 Projective flat connection and generalized Knizhnik-Zamolodchikov equation 67

3.5 Explicit form of the Knizhnik-Zamolodchikov equations for genus 0 and genus 1 72

3.5.1 Explicit form of the equations for g=0 72

3.5.2 Explicit form of the equations for g=1 76

3.6 Appendix:the Krichever-Novikov base in the elliptic case 81

4 Lax operator algebras 84

4.1 Lax operators and their Lie bracket 85

4.1.1 Lax operator algebras for g?(n)and?(n) 85

4.1.2 Lax operator algebras for ?(n) 86

4.1.3 Lax operator algebras for ?(2n) 88

4.2 Almost-graded structure 90

4.3 Central extensions of Lax operator algebras:the construction 92

4.4 Uniqueness theorem 98

5 Lax equations on Riemann surfaces,and their hierarchies 101

5.1 M-operators 103

5.2 L-operators and Lax operator algebras from M-operators 106

5.3 g-valued Lax equations 107

5.4 Hierarchies of commuting flows 111

5.5 Symplectic structure 113

5.6 Hamiltonian theory 117

5.7 Examples:Calogero-Moser systems 124

6 Lax integrable systems and conformal field theory 129

6.1 Conformal field theory related to a Lax integrable system 129

6.2 From Lax operator algebra to commutative Krichever-Novikov algebra 131

6.3 The representation of AL 132

6.4 Sugawara representation 134

6.5 Conformal blocks and the Knizhnik-Zamolodchikov connection 135

6.6 The representation of the algebra of Hamiltonian vector fields and commuting Hamiltonians 135

6.7 Unitarity 136

6.8 Relation to geometric quantization and quantum integrable systems 138

6.9 Remark on the Seiberg-Witten theory 138

Bibliography 141

Notation 147

Index 149

购买PDF格式(7分)
返回顶部