
- 作 者:John M.Lee著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2003
- ISBN:7506259591
- 标注页数:385 页
- PDF页数:405 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源405 ≥385页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
1 Introduction 1
What Are Manifolds? 1
Why Study Manifolds? 4
2 Topological Spaces 17
Topologies 17
Bases 27
Manifolds 30
Problems 36
3 New Spaces from Old 39
Subspaces 39
Product Spaces 48
Quotient Spaces 52
Group Actions 58
Problems 62
4 Connectedness and Compactness 65
Connectedness 65
Compactness 73
Locally Compact Hausdorff Spaces 81
Problems 88
5 Simplicial Complexes 91
Euclidean Simplicial Complexes 92
Abstract Simplicial Complexes 96
Triangulation Theorems 102
Orientations 105
Combinatorial Invariants 109
Problems 114
6 Curves and Surfaces 117
Classification of Curves 118
Surfaces 119
Connected Sums 126
Polygonal Presentations of Surfaces 129
Classification of Surface Presentations 137
Combinatorial Invariants 142
Problems 146
7 Homotopy and the Fundamental Group 147
Homotopy 148
The Fundamental Group 150
Homomorphisms Induced by Continuous Maps 158
Homotopy Equivalence 161
Higher Homotopy Groups 169
Categories and Functors 170
Problems 176
8 Circles and Spheres 179
The Fundamental Group of the Circle 180
Proofs of the Lifting Lemmas 183
Fundamental Groups of Spheres 187
Fundamental Groups of Product Spaces 188
Fundamental Groups of Manifolds 189
Problems 191
9 Some Group Theory 193
Free Products 193
Free Groups 199
Presentations of Groups 201
Free Abelian Groups 203
Problems 208
10 The Seifert-Van Kampen Theorem 209
Statement of the Theorem 210
Applications 212
Proof of the Theorem 221
Distinguishing Manifolds 227
Problems 230
11 Covering Spaces 233
Definitions and Basic Properties 234
Covering Maps and the Fundamental Group 239
The Covering Group 247
Problems 253
12 Classification of Coverings 257
Covering Homomorphisms 258
The Universal Covering Space 261
Proper Group Actions 266
The Classification Theorem 283
Problems 289
13 Homology 291
Singular Homology Groups 292
Homotopy Invariance 300
Homology and the Fundamental Group 304
The Mayer-Vietoris Theorem 308
Applications 318
The Homology of a Simplicial Complex 323
Cohomology 329
Problems 334
Appendix:Review of Prerequisites 337
Set Theory 337
Metric Spaces 347
Group Theory 352
References 359
Index 362