
- 作 者:(美)A. Pazy
- 出 版 社:世界图书出版公司北京公司
- 出版年份:2006
- ISBN:7506282275
- 标注页数:281 页
- PDF页数:291 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源291 ≥281页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Chapter 1 Generation and Representation 1
1.1 Uniformly Continuous Semigroups of Bounded Linear Operators 1
1.2 Strongly Continuous Semigroups of Bounded Linear Operators 4
1.3 The Hille-Yosida Theorem 8
1.4 The Lumer Phillips Theorem 13
1.5 The Characterization of the Infinitesimal Generators of C0 Semigroups 17
1.6 Groups of Bounded Operators 22
1.7 The Inversion of the Laplace Transform 25
1.8 Two Exponential Formulas 32
1.9 Pseudo Resolvents 36
1.10 The Dual Semigroup 38
Chapter 2 Spectral Properties and Regularity 42
2.1 Weak Equals Strong 42
2.2 Spectral Mapping Theorems 44
2.3 Semigroups of Compact Operators 48
2.4 Differentiability 51
2.5 Analytic Semigroups 60
2.6 Fractional Powers of Closed Operators 69
Chapter 3 Perturbations and Approximations 76
3.1 Perturbations by Bounded Linear Operators 76
3.2 Perturbations of Infinitesimal Generators of Analytic Semigroups 80
3.3 Perturbations of Infinitesimal Generators of Contraction Semigroups 81
3.4 The Trotter Approximation Theorem 84
3.5 A General Representation Theorem 89
3.6 Approximation by Discrete Semigroups 94
Chapter 4 The Abstract Cauchy Problem 100
4.1 The Homogeneous Initial Value Problem 100
4.2 The Inhomogeneous Initial Value Problem 105
4.3 Regularity of Mild Solutions for Analytic Semigroups 110
4.4 Asymptotic Behavior of Solutions 115
4.5 Invariant and Admissible Subspaces 121
Chapter 5 Evolution Equations 126
5.1 Evolution Systems 126
5.2 Stable Families of Generators 130
5.3 An Evolution System in the Hyperbolic Case 134
5.4 Regular Solutions in the Hyperbolic Case 139
5.5 The Inhomogeneous Equation in the Hyperbolic Case 146
5.6 An Evolution System for the Parabolic Initial Value Problem 149
5.7 The Inhomogeneous Equation in the Parabolic Case 167
5.8 Asymptotic Behavior of Solutions in the Parabolic Case 172
Chapter 6 Some Nonlinear Evolution Equations 183
6.1 Lipschitz Perturbations of Linear Evolution Equations 183
6.2 Semilinear Equations with Compact Semigroups 191
6.3 Semilinear Equations with Analytic Semigroups 195
6.4 A Quasilinear Equation of Evolution 200
Chapter 7 Applications to Partial Differential Equations—Linear Equations 206
7.1 Introduction 206
7.2 Parabolic Equations—L2 Theory 208
7.3 Parabolic Equations—Lp Theory 212
7.4 The Wave Equation 219
7.5 A Schr?dinger Equation 223
7.6 A Parabolic Evolution Equation 225
Chapter 8 Applications to Partial Differential Equations—Nonlinear Equations 230
8.1 A Nonlinear Schr?dinger Equation 230
8.2 A Nonlinear Heat Equation in R1 234
8.3 A Semilinear Evolution Equation in R3 238
8.4 A General Class of Semilinear Initial Value Problems 241
8.5 The Korteweg-de Vries Equation 247
Bibliographical Notes and Remarks 252
Bibliography 264
Index 277