
- 作 者:安俊秀著
- 出 版 社:成都:西南交通大学出版社
- 出版年份:2016
- ISBN:9787564351052
- 标注页数:210 页
- PDF页数:218 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源218 ≥210页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
第1章 社会计算概述 1
1.1 社会计算的研究背景及定义 2
1.2 社会计算的研究现状 5
1.3 社会计算的应用领域 8
1.4 社会计算的发展趋势 14
第2章 社会媒体概述 22
2.1 社会媒体的相关概念 23
2.2 社会媒体的特点 29
2.3 社会媒体面临的挑战 32
第3章 节点,联系与影响 34
3.1 社会网络 35
3.2 节点的重要性 36
3.3 联系的强度 41
3.4 社会影响建模 44
第4章 社会媒体数据获取与分析 49
4.1 社会传感器网络 50
4.2 观点挖掘 54
4.3 情感倾向分析概述 57
第5章 社区发现 65
5.1 社区的基本概念 66
5.2 社区发现的算法 67
5.3 社区评价 74
第6章 社交网络建模与分析 77
6.1 社交网络基本理论 78
6.2 社交网络信息传播研究现状 86
6.3 当前社交网络的信息传播模型 89
第7章 社交网络中虚假信息传播特点及控制算法研究 105
7.1 社交网络中虚假信息传播的特点 106
7.2 社交网络信息控制的研究现状 107
7.3 克隆选择算法概述 109
7.4 改进的克隆选择信息控制算法 112
7.5 改进的克隆选择信息控制算法实验及分析 120
第8章 微博网络节点影响力因素及度量算法分析 127
8.1 研究背景及意义 128
8.2 国内外研究现状 130
8.3 微博网络影响力关键因素分析 134
8.4 微博网络节点影响力关键因素度量研究 139
8.5 LeaderRank算法与UserRank算法分析 147
第9章 HowNet和Naive Bayes相结合的网络社会评论倾向性分析 165
9.1 网络社会评论倾向性分析概况 166
9.2 网络群体心理趋势智能分析模型架构 170
9.3 基于HowNet的情感词语资源的情感特征识别 181
9.4 基于朴素贝叶斯理论的分类器构造 191
9.5 HowNet和Naive Bayes相结合的网络社会评论倾向性分析结构设计及实现 196
9.6 实验与结果分析 199
第10章 结论与展望 205
10.1 社会计算面临的挑战 206
10.2 社会计算的发展方向 209