
- 作 者:李永乐编
- 出 版 社:北京:清华大学出版社
- 出版年份:1997
- ISBN:7302023859
- 标注页数:254 页
- PDF页数:261 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源261 ≥254页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
第1章 行列式 1
1.1 二、三阶行列式 1
1.2 n阶行列式 16
1.3 克莱姆(Cramer)法则 27
习题1 31
第2章 矩阵 35
2.1 矩阵的概念及运算 36
2.2 可逆矩阵 50
2.3 初等矩阵 58
2.4 特殊矩阵 66
2.5 分块矩阵 71
习题2 77
第3章 线性方程组 82
3.1 高斯(Gauss)消元法 82
3.2 向量的线性相关 90
3.3 向量组的秩 103
3.4 矩阵的秩 110
3.5 齐次线性方程组 116
3.6 非齐次线性方程组 123
习题3 131
第4章 向量空间 137
4.1 向量空间 137
4.2 线性空间 146
4.3 向量的内积、欧氏(Euclid)空间 149
4.4 子空间 157
4.5 线性变换 160
习题4 169
第5章 特征值和特征向量 172
5.1 特征值和特征向量 172
5.2 相似矩阵 183
5.3 矩阵可对角化的条件 187
5.4 实对称矩阵的对角化 195
习题5 203
6.1 二次型的矩阵表示 207
第6章 二次型 207
6.2 用配方法化二次型为标准形 213
6.3 用正交变换化二次型为标准形 217
6.4 正定二次型 224
习题6 231
附录 线性代数应用举例 235
1.把连续问题转化为离散问题 235
2.矩阵对角化解微分方程组 236
3.最小二乘法 238
4.编码问题 241
部分习题答案及提示 244