
- 作 者:(美)浪著
- 出 版 社:北京:世界图书北京出版公司
- 出版年份:2012
- ISBN:9787510044076
- 标注页数:619 页
- PDF页数:633 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源633 ≥619页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
PART ONE Basic Material 1
CHAPTER Ⅰ Vectors 3
1.Definition of Points in Space 3
2.Located Vectors 11
3.Scalar Product 14
4.The Norm of a Vector 17
5.Parametric Lines 32
6.Planes 36
7.The Cross Product 44
CHAPTER Ⅱ Differentiation of Vectors 49
1.Derivative 49
2.Length of Curves 62
CHAPTER Ⅲ Functions of Several Variables 66
1.Graphs and Level Curves 66
2.Partial Derivatives 70
3.Differentiability and Gradient 77
4.Repeated Partial Derivatives 82
CHAPTER Ⅳ The Chain Rule and the Gradient 87
1.The Chain Rule 87
2.Tangent Plane 92
3.Directional Derivative 99
4.Functions Depending only on the Distance from the Origin 103
5.The Law of Conservation of Energy 111
6.Further Technique in Partial Differentiation 114
PART TWO Maxima,Minima,and Taylor's Formula 121
CHAPTER Ⅴ Maximum and Minimum 123
1.Critical Points 123
2.Boundary Points 126
3.Lagrange Multipliers 135
CHAPTER Ⅵ Higher Derivatives 143
1.The First Two Terms in Taylor's Formula 143
2.The Quadratic Term at Critical Points 149
3.Algebraic Study of a Quadratic Form 155
4.Partial Differential Operators 162
5.The General Expression for Taylor's Formula 170
Appendix.Taylor's Formula in One Variable 176
PART THREE Curve Integrals and Double Integrals 181
CHAPTER Ⅶ Potential Functions 183
1.Existence and Uniqueness of Potential Functions 184
2.Local Existence of Potential Functions 188
3.An Important Special Vector Field 194
4.Differentiating Under the Integral 198
5.Proof of the Local Existence Theorem 201
CHAPTER Ⅷ Curve Integrals 206
1.Definition and Evaluation of Curve Integrals 207
2.The Reverse Path 217
3.Curve Integrals When the Vector Field Has a Potential Function 220
4.Dependence of the Integral on the Path 228
CHAPTER Ⅸ Double Integrals 233
1.Double Integrals 233
2.Repeated Integrals 242
3.Polar Coordinates 252
CHAPTER Ⅹ Green's Theorem 269
1.The Standard Version 269
2.The Divergence and the Rotation of a Vector Field 280
PART FOUR Triple and Surface Integrals 291
CHAPTER Ⅺ Triple Integrals 293
1.Triple Integrals 293
2.Cylindrical and Spherical Coordinates 298
3.Center of Mass 313
CHAPTER Ⅻ Surface Integrals 318
1.Parametrization,Tangent Plane,and Normal Vector 318
2.Surface Area 325
3.Surface Integrals 333
4.Curl and Divergence of a Vector Field 342
5.Divergence Theorem in 3-Space 345
6.Stokes' Theorem 355
PART FIVE Mappings,Inverse Mappings,and Change of Variables Formula. 365
CHAPTER ⅩⅢ Matrices 367
1.Matrices 367
2.Multiplication of Matrices 372
CHAPTER ⅩⅣ Linear Mappings 385
1.Mappings 385
2.Linear Mappings 392
3.Geometric Applications 398
4.Composition and Inverse of Mappings 404
CHAPTER ⅩⅤ Determinants 412
1.Determinants of Order 2 412
2.Determinants of Order 3 416
3.Additional Properties of Determinants 420
4.Independence of Vectors 428
5.Determinant of a Product 430
6.Inverse of a Matrix 431
CHAPTER ⅩⅥ Applications to Functions of Several Variables 434
1.The Jacobian Matrix 434
2.Differentiability 438
3.The Chain Rule 440
4.Inverse Mappings 443
5.Implicit Functions 446
6.The Hessian 450
CHAPTER ⅩⅦ The Change of Variables Formula 453
1.Determinants as Area and Volume 453
2.Dilations 463
3.Change of Variables Formula in Two Dimensions 469
4.Application of Green's Formula to the Change of Variables Formula 474
5.Change of Variables Formula in Three Dimensions 478
6.Vector Fields on the Sphere 483
APPENDIX Fourier Series 487
1.General Scalar Products 487
2.Computation of Fourier Series 494