
- 作 者:(美)DavidC.Lay著
- 出 版 社:北京:电子工业出版社
- 出版年份:2010
- ISBN:9787121113956
- 标注页数:560 页
- PDF页数:577 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源577 ≥560页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
CHAPTER 1 Linear Equations in Linear Algebra 1
INTRODUCTORY EXAMPLE:Linear Models in Economics and Engineering 1
1.1 Systems of Linear Equations 2
1.2 Row Reduction and Echelon Forms 14
1.3 Vector Equations 28
1.4 The Matrix Equation Ax=b 40
1.5 Solution Sets of Linear Systems 50
1.6 Applications of Linear Systems 57
1.7 Linear Independence 65
1.8 Introduction to Linear Transformations 73
1.9 The Matrix of a Linear Transformation 82
1.10 Linear Models in Business,Science,and Engineering 92
Supplementary Exercises 102
CHAPTER 2 Matrix Algebra 105
INTRODUCTORY EXAMPLE:Computer Models in Aircraft Design 105
2.1 Matrix Operations 107
2.2 The Inverse of a Matrix 118
2.3 Characterizations of Invertible Matrices 128
2.4 Partitioned Matrices 134
2.5 Matrix Factorizations 142
2.6 The Leontief Input-Output Model 152
2.7 Applications to Computer Graphics 158
2.8 Subspaces of Rn 167
2.9 Dimension and Rank 176
Supplementary Exercises 183
CHAPTER 3 Determinants 185
INTRODUCTORY EXAMPLE:Determinants in Analytic Geometry 185
3.1 Introduction to Determinants 186
3.2 Properties of Determinants 192
3.3 Cramer's Rule,Volume,and Linear Transformations 201
Supplementary Exercises 211
CHAPTER 4 Vector Spaces 215
INTRODUCTORY EXAMPLE:Space Flight and Control Systems 215
4.1 Vector Spaces and Subspaces 216
4.2 Null Spaces,Column Spaces,and Linear Transformations 226
4.3 Linearly Independent Sets;Bases 237
4.4 Coordinate Systems 246
4.5 The Dimension of a Vector Space 256
4.6 Rank 262
4.7 Change of Basis 271
4.8 Applications to Difference Equations 277
4.9 Applications to Markov Chains 288
Supplementary Exercises 299
CHAPTER 5 Eigenvalues and Eigenvectors 301
INTRODUCTORY EXAMPLE:Dynamical Systems and Spotted Owls 301
5.1 Eigenvectors and Eigenvalues 302
5.2 The Characteristic Equation 310
5.3 Diagonalization 319
5.4 Eigenvectors and Linear Transformations 327
5.5 Complex Eigenvalues 335
5.6 Discrete Dynamical Systems 342
5.7 Applications to Differential Equations 353
5.8 Iterative Estimates for Eigenvalues 363
Supplementary Exercises 370
CHAPTER 6 Orthogonality and Least Squares 373
INTRODUCTORY EXAMPLE:Readjusting the North American Datum 373
6.1 Inner Product,Length,and Orthogonality 375
6.2 Orthogonal Sets 384
6.3 Orthogonal Projections 394
6.4 The Gram-Schmidt Process 402
6.5 Least-Squares Problems 409
6.6 Applications to Linear Models 419
6.7 Inner Product Spaces 427
6.8 Applications of Inner Product Spaces 436
Supplementary Exercises 444
CHAPTER 7 SVmmetric Matrices and Quadratic Forms 447
INTRODUCTORY EXAMPLE:Multichannel Image Processing 447
7.1 Diagonalization of Symmetric Matrices 449
7.2 Quadratic Forms 455
7.3 Constrained Optimization 463
7.4 The Singular Value Decomposition 471
7.5 Applications to Image Processing and Statistics 482
Supplementary Exercises 491