点此搜书

非交换环初级教程  第2版  英文
  • 作 者:(美)拉姆著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2010
  • ISBN:9787302241515
  • 标注页数:385 页
  • PDF页数:401 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

12

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源401 ≥385页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

CHAPTER 1 Wedderburn-Artin Theory 1

1.Basic Terminology and Examples 2

Exercises for §1 22

2.Semisimplicity 25

Exercises for §2 29

3.Structure of Semisimple Rings 30

Exercises for §3 45

CHAPTER 2 Jacobson Radical Theory 48

4.The Jacobson Radical 50

Exercises for §4 63

5.Jacobson Radical Under Change of Rings 67

Exercises for §5 77

6.Group Rings and the J-Semisimplicity Problem 78

Exercises for §6 98

CHAPTER 3 Introduction to Representation Theory 101

7.Modules over Finite-Dimensional Algebras 102

Exercises for §7 116

8.Representations of Groups 117

Exercises for §8 137

9.Linear Groups 141

Exercises for §9 152

CHAPTER 4 Prime and Primitive Rings 153

10.The Prime Radical;Prime and Semiprime Rings 154

Exercises for §10 168

11.Structure of Primitive Rings;the Density Theorem 171

Exercises for §11 188

12.Subdirect Products and Commutativity Theorems 191

Exercises for §12 198

CHAPTER 5 Introduction to Division Rings 202

13.Division Rings 203

Exercises for §13 214

14.Some Classical Constructions 216

Exercises for §14 235

15.Tensor Products and Maximal Subfields 238

Exercises for §15 247

16.Polynomials over Division Rings 248

Exercises for §16 258

CHAPTER 6 Ordered Structures in Rings 261

17.Orderings and Preorderings in Rings 262

Exercises for §17 269

18.Ordered Division Rings 270

Exercises for §18 276

CHAPTER 7 Local Rings,Semilocal Rings,and Idempotents 279

19.Local Rings 279

Exercises for §19 293

20.Semilocal Rings 296

Appendix:Endomorphism Rings of Uniserial Modules 302

Exercises for §20 306

21.Th Theory of Idempotents 308

Exercises for §21 322

22.Central Idempotents and Block Decompositions 326

Exercises for §22 333

CHAPTER 8 Perfect and Semiperfect Rings 335

23.Perfect and Semiperfect Rings 336

Exercises for §23 346

24.Homological Characterizations of Perfect and Semiperfect Rings 347

Exercises for §24 358

25.Principal Indecomposables and Basic Rings 359

Exercises for §25 368

References 370

Name Index 373

Subject Index 377

购买PDF格式(12分)
返回顶部