点此搜书

当前位置:数值分析pdf电子书下载 > 数理化
数值分析
  • 作 者:袁东锦编著
  • 出 版 社:南京:东南大学出版社
  • 出版年份:2005
  • ISBN:7810898744
  • 标注页数:269 页
  • PDF页数:278 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

10

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源278 ≥269页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

1 Preliminaries 1

1.1 Review of Calculus 1

Exercise 7

1.2 Round-Off Errors and Computer Arithmetic 7

Exercise 17

2 The Solution of Nonlinear Equation f(x)=0 19

2.1 The Bisection Algorithm 20

Exercise 25

2.2 Fixed-Point Iteration 25

Exercise 33

2.3 The Newton-Raphson Method 34

Exercise 42

2.4 Error Analysis for Iterative Methods and Acceleration Techniques 42

Exercise 51

3 Interpolation and Polynomial Approximation 52

3.1 Interpolation and the Lagrange Polynomial 53

Exercise 61

3.2 Divided Differences 62

Exercise 70

3.3 Hermite Interpolation 72

Exercise 78

3.4 Cubic Spline Interpolation 79

4 Numerical Integration 88

4.1 Introduction to Quadrature 89

Exercise 97

4.2 Composite Trapezoidal and Simpson's Rule 98

Exercise 108

4.3 Recursive Rules and Romberg Integration 109

Exercise 120

5 Direct Methods for Solving Linear Systems 122

5.1 Linear Systems of Equations 122

Exercise 130

5.2 Pivoting Strategies 130

Exercise 137

5.3 Matrix Factorization 137

Exercise 145

5.4 Special Types of Matrices 145

Exercise 157

6 Iterative Techniques in Matrix Algebra 158

6.1 Norms of Vectors and Matrices 158

Exercise 166

6.2 Eigenvalues and Eigenvectors 167

Exercise 171

6.3 Iterative Techniques for Solving Linear Systems 172

Exercise 184

6.4 Error Estimates and Iterative Refinement 185

Exercise 193

7 Approximating Eigenvalues 194

7.1 Linear Algebra and Eigenvalues 194

Exercise 200

7.2 The Power Method 201

Exercise 214

7.3 Householder's Method 215

Exercise 222

7.4 The QR Algorithm 223

Exercise 233

8 Initial-Value Problems for Ordinary Differential Equations 235

8.1 The Elementary Theory of Initial-Value Problems 235

Exercise 240

8.2 Euler's Method 240

Exercise 247

8.3 Higher-Order Taylor Methods 248

Exercise 252

8.4 Runge-Kutta Methods 253

Exercise 260

8.5 Error Control and the Runge-Kutta-Fehlberg Method 261

Exercise 267

References 269

购买PDF格式(10分)
返回顶部