
- 作 者:(瑞典)赫尔曼德尔著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2016
- ISBN:7519209278
- 标注页数:392 页
- PDF页数:402 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源402 ≥392页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Introduction 1
Chapter Ⅹ.Existence and Approximation of Solutions of Differential Equations 3
Summary 3
10.1.The Spaces Bp,k 3
10.2.Fundamental Solutions 16
10.3.The Equation P(D)u=f when f∈?′ 29
10.4.Comparison of Differential Operators 32
10.5.Approximation of Solutions of Homogeneous Differential Equations 39
10.6.The Equation P(D)u=f when f is in a Local Space ?′F 41
10.7.The Equation P(D)u=f when f∈?′(X) 45
10.8.The Geometrical Meaning of the Convexity Conditions 50
Notes 58
Chapter Ⅺ.Interior Regularity of Solutions of Differential Equations 60
Summary 60
11.1.Hypoelliptic Operators 61
11.2.Partially Hypoelliptic Operators 69
11.3.Continuation of Differentiability 73
11.4.Estimates for Derivatives of High Order 85
Notes 92
Chapter Ⅻ.The Cauchy and Mixed Problems 94
Summary 94
12.1.The Cauchy Problem for the Wave Equation 96
12.2.The Oscillatory Cauchy Problem for the Wave Equation 104
12.3.Necessary Conditions for Existence and Uniqueness of Solutions to the Cauchy Problem 110
12.4.Properties of Hyperbolic Polynomials 112
12.5.The Cauchy Problem for a Hyperbolic Equation 120
12.6.The Singularities of the Fundamental Solution 125
12.7.A Global Uniqueness Theorem 133
12.8.The Characteristic Cauchy Problem 143
12.9.Mixed Problems 162
Notes 180
Chapter ⅩⅢ.Differential Operators of Constant Strength 182
Summary 182
13.1.Definitions and Basic Properties 182
13.2.Existence Theorems when the Coefficients are Merely Continuous 184
13.3.Existence Theorems when the Coefficients are in C∞ 186
13.4.Hypoellipticity 191
13.5.Global Existence Theorems 194
13.6.Non-uniqueness for the Cauchy Problem 201
Notes 224
Chapter ⅩⅣ.Scattering Theory 225
Summary 225
14.1.Some Function Spaces 227
14.2.Division by Functions with Simple Zeros 232
14.3.The Resolvent of the Unperturbed Operator 237
14.4.Short Range Perturbations 243
14.5.The Boundary Values of the Resolvent and the Point Spectrum 251
14.6.The Distorted Fourier Transforms and the Continuous Spectrum 255
14.7.Absence of Embedded Eigenvalues 264
Notes 268
Chapter ⅩⅤ.Analytic Function Theory and Differential Equations 270
Summary 270
15.1.The Inhomogeneous Cauchy-Riemann Equations 271
15.2.The Fourier-Laplace Transform of Bc2,k(X)when X is Convex 279
15.3.Fourier-Laplace Representation of Solutions of Differential Equations 287
15.4.The Fourier-Laplace Transform of C?(X)when X is Convex 296
Notes 300
Chapter ⅩⅥ.Convolution Equations 302
Summary 302
16.1.Subharmonic Functions 303
16.2.Plurisubharmonic Functions 314
16.3.The Support and Singular Support of a Convolution 319
16.4.The Approximation Theorem 335
16.5.The Inhomogeneous Convolution Equation 341
16.6.Hypoelliptic Convolution Equations 353
16.7.Hyperbolic Convolution Equations 356
Notes 360
Appendix A.Some Algebraic Lemmas 362
A.1.The Zeros of Analytic Functions 362
A.2.Asymptotic Properties of Algebraic Functions of Several Variables 364
Notes 371
Bibliography 373
Index 391
Index of Notation 392