购买云解压PDF图书

当前位置: 多项式理想的Grobner基初等导论 > 购买云解压PDF图书
多项式理想的Grobner基初等导论
  • 作 者:吕家凤,李会师著
  • 出 版 社:北京:科学出版社
  • 出版年份:2018
  • ISBN:9787030569493
  • 注意:在使用云解压之前,请认真核对实际PDF页数与内容!

在线云解压

价格(点数)

购买连接

说明

转为PDF格式

7

立即购买

(在线云解压服务)

云解压服务说明

1、本站所有的云解压默认都是转为PDF格式,该格式图书只能阅读和打印,不能再次编辑。

云解压下载及付费说明

1、所有的电子图书云解压均转换为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、云解压在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

第1章 多项式理想的Grobner基 1

1.1问题的引入 1

1.2单项式序 8

1.3单项式理想 12

1.4除法算法 15

1.5 Grobner基 19

1.6 Buchberger定理 22

1.7 Buchberger算法 28

1.8极小与约化Grobner基 33

1.9消元序下的Grobner基与消元定理 38

第2章 对仿射K-代数的初等应用 45

2.1交换K-代数与代数同态映射简介 45

2.2对多项式理想几个结构性质的应用 48

2.3求解多项式理想I∩J的生成元集 52

2.4对仿射K-代数几个结构性质的应用 54

2.5对仿射K-代数同态映射的应用 63

2.6对仿射K-代数中K-代数元的一个应用 70

第3章 在代数几何中的初等应用 73

3.1初等代数几何的一些基本元素简介 73

3.2求解V(I)≠??V(I)有限?f∈?I? 79

3.3求解π(V)的Zariski闭包V(I(π(V))) 84

3.4对多项式映射V(I)α→V(J)的应用 87

第4章 Grobner基的更多应用简介 92

4.1对域的有限代数扩张的一个应用 92

4.2在整数优化中的应用举例 100

4.3在图论中的应用举例 111

第5章 附录 120

5.1 Hilbert零点定理的证明 120

5.2消元理想的零点扩张原理 128

5.3分式环的构造 139

参考文献 146

索引 147

购买PDF格式(7分)
返回顶部