购买云解压PDF图书

当前位置: 潜在变量模型的贝叶斯模型选择 > 购买云解压PDF图书
潜在变量模型的贝叶斯模型选择
  • 作 者:李云仙,唐年胜著
  • 出 版 社:成都:西南交通大学出版社
  • 出版年份:2013
  • ISBN:9787564324292
  • 注意:在使用云解压之前,请认真核对实际PDF页数与内容!

在线云解压

价格(点数)

购买连接

说明

转为PDF格式

8

立即购买

(在线云解压服务)

云解压服务说明

1、本站所有的云解压默认都是转为PDF格式,该格式图书只能阅读和打印,不能再次编辑。

云解压下载及付费说明

1、所有的电子图书云解压均转换为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、云解压在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

Chapter 1 Introduction to Model Selection 1

1.1 Introduction 1

1.2 Bayes Factor 5

1.3 Other Methods 13

1.4 Lv Measure for Model Selection 16

1.5 Outline of the Book 18

Chapter 2 Bayesian Model Selection for Nonlinear Latent Variable Models 20

2.1 Introduction 20

2.2 Brief Review of the Lv Measure 21

2.3 Model Description 23

2.4 Lv Measure for Nonlinear Structural Equation Models 25

2.5 A Simulation Study 35

2.6 A Real Example 47

2.7 Discussion 51

Chapter 3 Bayesian Model Selection for Latent Variable Models with Mixed Continuous and Categorical Data 53

3.1 Introduction 53

3.2 Model Description 54

3.3 Lv Measure for Nonlinear SEMs with Mixed Continuous and Ordered Categorical Data 56

3.4 A Simulation Study 66

3.5 A Real Example 73

3.6 Discussion 78

Chapter 4 Bayesian Model Selection of Two-Level Latent Variable Models 79

4.1 Introduction 79

4.2 Model Description 81

4.3 Lv Measure for Two-Level Structural Equation Models 84

4.4 A Simulation Study 92

4.5 A Real Example 102

4.6 Discussion 106

Chapter 5 Bayesian Model Selection for Latent Variable Models with Finite Mixtures 107

5.1 Introduction 107

5.2 Model Description 109

5.3 Lv Measure for Finite Mixture SEMs 111

5.4 A Simulation Study 121

5.5 A Real Example 126

5.6 Discussion 129

Chapter 6 Bayesian Model Selection of Latent Variable Model With Non-Ignorable Missing Data 130

6.1 Introduction 130

6.2 NSEMs with Non-Ignorable Missing Data 132

6.3 Lv Measure for NSEM with Non-Ignorable Missing Data 134

6.4 Illustrative Examples 143

6.5 Discussion 149

References 157

Appendix A Variable Description in Real Examples 164

购买PDF格式(8分)
返回顶部