
- 作 者:黄玉娟,李爱芹主编;曹海军,刘吉晓副主编;尹金生主审
- 出 版 社:北京:中国水利水电出版社
- 出版年份:2014
- ISBN:9787517023364
- 标注页数:213 页
- PDF页数:225 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源225 ≥213页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
第7章 空间解析几何与向量代数 1
7.1 向量及其线性运算 1
7.1.1 向量的概念 1
7.1.2 向量的线性运算 2
习题7.1 3
7.2 空间直角坐标系 向量的坐标 4
7.2.1 空间直角坐标系 4
7.2.2 向量的坐标表示 5
7.2.3 利用坐标作向量的线性运算 6
7.2.4 向量的模与方向余弦 7
7.2.5 向量在轴上的投影 9
习题7.2 10
7.3 数量积 向量积 10
7.3.1 两向量的数量积 10
7.3.2 两向量的向量积 12
习题7.3 15
7.4 曲面及其方程 15
7.4.1 曲面方程的概念 15
7.4.2 旋转曲面 17
7.4.3 柱面 19
7.4.4 二次曲面 20
习题7.4 22
7.5 空间曲线及其方程 23
7.5.1 空间曲线的一般方程 23
7.5.2 空间曲线的参数方程 24
7.5.3 空间曲线在坐标面上的投影 25
习题7.5 27
7.6 平面及其方程 27
7.6.1 平面的点法式方程 28
7.6.2 平面的一般式方程 29
7.6.3 两平面的夹角 30
习题7.6 32
7.7 空间直线及其方程 33
7.7.1 空间直线的一般方程 33
7.7.2 平面束 34
7.7.3 空间直线的对称式方程与参数方程 34
7.7.4 两直线的夹角 36
7.7.5 直线与平面的夹角 37
习题7.7 38
复习题7 39
数学家简介——笛卡尔 40
第8章 多元函数微分法及其应用 41
8.1 多元函数的基本概念 41
8.1.1 平面点集 41
8.1.2 多元函数的概念 42
8.1.3 多元函数的极限 43
8.1.4 多元函数的连续性 45
习题8.1 46
8.2 偏导数 47
8.2.1 偏导数的定义及其计算方法 47
8.2.2 高阶偏导数 50
习题8.2 51
8.3 全微分 52
8.3.1 全微分的定义 52
8.3.2 全微分在近似计算中的应用 54
习题8.3 54
8.4 多元复合函数的求导法则 55
8.4.1 复合函数的中间变量均为一元函数的情形 55
8.4.2 复合函数的中间变量均为多元函数的情形 56
8.4.3 复合函数的中间变量既有一元函数也有多元函数的情形 57
8.4.4 全微分形式不变性 59
习题8.4 59
8.5 隐函数的求导公式 60
习题8.5 64
8.6 多元函数微分学的几何应用 65
8.6.1 空间曲线的切线与法平面 65
8.6.2 曲面的切平面与法线 68
习题8.6 70
8.7 方向导数与梯度 70
8.7.1 方向导数 71
8.7.2 梯度 74
习题8.7 76
8.8 多元函数的极值及其求法 76
8.8.1 多元函数的极值 76
8.8.2 多元函数的最大值与最小值 78
8.8.3 条件极值 拉格朗日乘数法 80
习题8.8 82
复习题8 82
数学家简介——罗尔 84
第9章 重积分 86
9.1 二重积分 86
9.1.1 二重积分的概念 86
9.1.2 二重积分的性质 89
习题9.1 91
9.2 二重积分的计算 91
9.2.1 直角坐标系下计算二重积分 91
9.2.2 极坐标系下计算二重积分 99
习题9.2 103
9.3 三重积分 104
9.3.1 三重积分的概念 104
9.3.2 三重积分的计算 105
习题9.3 110
9.4 重积分的应用 111
9.4.1 求立体的体积 111
9.4.2 曲面的面积 112
9.4.3 求物体的质量 114
9.4.4 质心 114
9.4.5 转动惯量 116
习题9.4 117
复习题9 118
数学家简介——格林 119
第10章 曲线积分与曲面积分 121
10.1 第一类曲线积分 121
10.1.1 引例——金属曲线的质量问题 121
10.1.2 第一类曲线积分的概念与性质 122
10.1.3 第一类曲线积分的计算 123
习题10.1 124
10.2 第二类曲线积分 125
10.2.1 第二类曲线积分的定义与性质 125
10.2.2 第二类曲线积分的计算 127
习题10.2 130
10.3 格林公式及其应用 130
10.3.1 格林公式 130
10.3.2 曲线积分与路径的无关性 134
习题10.3 138
10.4 第一类曲面积分 139
10.4.1 第一类曲面积分的概念与性质 139
10.4.2 第一类曲面积分的计算 139
习题10.4 141
10.5 第二类曲面积分 142
10.5.1 第二类曲面积分的概念与性质 142
10.5.2 第二类曲面积分的计算 145
习题10.5 146
10.6 高斯公式与斯托克斯公式 147
10.6.1 高斯公式 147
10.6.2 斯托克斯公式 149
习题10.6 150
复习题10 151
数学家简介——高斯 153
第11章 无穷级数 156
11.1 常数项级数的概念与基本性质 156
11.1.1 常数项级数的概念 156
11.1.2 收敛级数的性质 158
习题11.1 160
11.2 正项级数及其审敛法 161
11.2.1 正项级数收敛的充要条件 161
11.2.2 比较审敛法 162
11.2.3 比值审敛法 164
习题11.2 166
11.3 交错级数和任意项级数 167
11.3.1 交错级数及其审敛法 167
11.3.2 任意项级数与绝对收敛、条件收敛 169
习题11.3 171
11.4 幂级数 172
11.4.1 函数项级数的概念 172
11.4.2 幂级数及其收敛域 172
11.4.3 幂级数的性质及运算 176
习题11.4 178
11.5 函数展开成幂级数 179
11.5.1 泰勒公式与泰勒级数 179
11.5.2 直接展开与间接展开 181
习题11.5 184
11.6 傅立叶级数 185
11.6.1 三角函数系与三角级数 185
11.6.2 f(x)的傅立叶级数 186
11.6.3 正弦级数和余弦级数 188
11.6.4 一般周期函数的傅里叶级数 190
习题11.6 191
复习题11 191
数学家简介——阿贝尔 193
附录 习题参考答案 195
参考文献 212