点此搜书

当前位置:数学分析技巧 上pdf电子书下载 > 数理化
数学分析技巧  上
  • 作 者:杨世藩编著
  • 出 版 社:北京:科学出版社
  • 出版年份:2016
  • ISBN:7030474063
  • 标注页数:450 页
  • PDF页数:458 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

13

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源458 ≥450页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

第1章 函数 1

1.1 函数概念 1

1.2 函数的几种特性 3

1.3 复合函数与反函数 6

1.4 基本初等函数 10

第2章 极限 18

2.1 序列极限的定义 18

2.2 序列极限的性质与运算 22

2.3 确界与单调有界序列 31

2.4 函数极限 38

2.5 两个重要极限 43

2.6 无穷小的阶以及无穷大的阶的比较 50

2.7 序列极限与函数极限的关系 57

第3章 连续 62

3.1 连续与间断 62

3.2 连续函数的运算 65

3.3 初等函数的连续性 65

3.4 有界闭区间上连续函数的性质 71

3.5 一致连续 81

第4章 实数与实数空间 89

4.1 实数定义 89

4.2 实数空间 92

4.3 确界存在定理与区间套定理 100

4.4 紧性定理 106

4.5 完备性定理 113

4.6 连续函数性质的证明 119

4.7 压缩映射原理 126

4.8 上极限与下极限 130

第5章 导数与微分 139

5.1 导数的概念 139

5.2 求导数的一般法则 148

5.3 微分 165

5.4 高阶导数与高阶微分 175

第6章 利用导数研究函数 189

6.1 极值 189

6.2 微分中值定理 194

6.3 洛必达法则 202

6.4 泰勒公式 216

6.5 函数的升降与极值 231

6.6 函数的凹凸性与拐点 241

6.7 函数作图 254

6.8 方程求根 264

第7章 不定积分 272

7.1 不定积分概念 272

7.2 积分表与线性性质 276

7.3 换元法 282

7.4 分部积分法 294

7.5 有理函数的积分 300

7.6 三角函数有理式的积分 306

7.7 无理函数的积分 312

7.8 积函数类 318

第8章 定积分 326

8.1 定积分概念 326

8.2 牛顿-莱布尼茨公式 332

8.3 可积函数 335

8.4 定积分的性质 346

8.5 变限定积分与原函数的存在性 355

8.6 定积分的换元法与分部积分法 357

8.7 定积分的近似计算 366

8.8 定积分的计算 378

第9章 定积分的几何应用 391

9.1 平面图形的面积 391

9.2 由平面的截面积求体积 396

9.3 平面曲线的弧长与曲率 400

9.4 旋转体侧面积的计算 406

9.5 微元法 409

9.6 定积分在物理中的应用 417

第10章 广义积分 426

10.1 无穷积分的概念 426

10.2 无穷积分收敛性的判别法 431

10.3 瑕积分的概念 436

10.4 瑕积分收敛性判别法 439

购买PDF格式(13分)
返回顶部