
- 作 者:Xueli Wang, Dingyi Pei
- 出 版 社:北京:科学出版社
- 出版年份:2012
- ISBN:9787030330796
- 标注页数:432 页
- PDF页数:441 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源441 ≥432页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Chapter 1 Theta Functions and Their Transformation Formulae 1
Chapter 2 Eisenstein Series 13
2.1 Eisenstein Series with Half Integral Weight 13
2.2 Eisenstein Series with Integral Weight 37
Chapter 3 The Modular Group and Its Subgroups 45
Chapter 4 Modular Forms with Integral Weight or Half-integral Weight 65
4.1 Dimension Formula for Modular Forms with Integral Weight 65
4.2 Dimension Formula for Modular Forms with Half-Integral Weight 81
References 88
Chapter 5 Operators on the Space of Modular Forms 89
5.1 Hecke Rings 89
5.2 A Representation of the Hecke Ring on the Space of Modular Forms 113
5.3 Zeta Functions of Modular Forms,Functional Equation,Weil Theorem 120
5.4 Hecke Operators on the Space of Modular Forms with Half-Integral Weight 134
References 152
Chapter 6 New Forms and Old Forms 153
6.1 New Forms with Integral Weight 153
6.2 New Forms with Half Integral Weight 178
6.3 Dimension Formulae for the Spaces of New Forms 200
Chapter 7 Construction of Eisenstein Series 205
7.1 Construction of Eisenstein Series with Weight≥5/2 205
7.2 Construction of Eisenstein Series with Weight 1/2 221
7.3 Construction of Eisenstein Series with Weight 3/2 232
7.4 Construction of Cohen-Eisenstein Series 246
7.5 Construction of Eisenstein Series with Integral Weight 255
References 263
Chapter 8 Weil Representation and Shimura Lifting 265
8.1 Weil Representation 265
8.2 Shimura Lifting for Cusp Forms 280
8.3 Shimura Lifting of Eisenstein Spaces 299
8.4 A Congruence Relation between Some Modular Forms 309
References 318
Chapter 9 Trace Formula 321
9.1 Eichler-Selberg Trace Formula on SL2(Z) 321
9.2 Eichler-Selberg Trace Formula on Fuchsian Groups 335
9.3 Trace Formula on the Space Sk+1/2(N,X) 348
References 362
Chapter 10 Integers Represented by Positive Definite Quadratic Forms 363
10.1 Theta Function of a Positive Definite Quadratic Form and Its Values at Cusp Points 363
10.2 The Minimal Integer Represented by a Positive Definite Quadratic Form 376
10.3 The Eligible Numbers of a Positive Definite Ternary Quadratic Form 390
References 428
Index 431