购买云解压PDF图书

当前位置: LINEAR ALGEBRA AND ITS APPLICATIONS FOURTH EDITION > 购买云解压PDF图书
LINEAR ALGEBRA AND ITS APPLICATIONS  FOURTH EDITION
  • 作 者:GILBERT STRANG
  • 出 版 社:BROOKS/COLE CENGAGE LEARNING
  • 出版年份:2006
  • ISBN:0030105676
  • 注意:在使用云解压之前,请认真核对实际PDF页数与内容!

在线云解压

价格(点数)

购买连接

说明

转为PDF格式

14

立即购买

(在线云解压服务)

云解压服务说明

1、本站所有的云解压默认都是转为PDF格式,该格式图书只能阅读和打印,不能再次编辑。

云解压下载及付费说明

1、所有的电子图书云解压均转换为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、云解压在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

Chapter 1 MATRICES AND GAUSSIAN ELIMINATION 1

1.1 Introduction 1

1.2 The Geometry of Linear Equations 3

1.3 An Example of Gaussian Elimination 11

1.4 Matrix Notation and Matrix Multiplication 19

1.5 Triangular Factors and Row Exchanges 32

1.6 Inverses and Transposes 45

1.7 Special Matrices and Applications 58

Review Exercises: Chapter 1 65

Chapter 2 VECTOR SPACES 69

2.1 Vector Spaces and Subspaces 69

2.2 Solving Ax = 0 and Ax = b 77

2.3 Linear Independence, Basis, and Dimension 92

2.4 The Four Fundamental Subspaces 102

2.5 Graphs and Networks 114

2.6 Linear Transformations 125

Review Exercises: Chapter 2 137

Chapter 3 ORTHOGONALITY 141

3.1 Orthogonal Vectors and Subspaces 141

3.2 Cosines and Projections onto Lines 152

3.3 Projections and Least Squares 160

3.4 Orthogonal Bases and Gram-Schmidt 174

3.5 The Fast Fourier Transform 188

Review Exercises: Chapter 3 198

Chapter 4 DETERMINANTS 201

4.1 Introduction 201

4.2 Properties of the Determinant 203

4.3 Formulas for the Determinant 210

4.4 Applications of Determinants 220

Review Exercises: Chapter 4 230

Chapter 5 EIGENVALUES AND EIGENVECTORS 233

5.1 Introduction 233

5.2 Diagonalization of a Matrix 245

5.3 Difference Equations and Powers Ak 254

5.4 Differential Equations and eAt 266

5.5 Complex Matrices 280

5.6 Similarity Transformations 293

Review Exercises: Chapter 5 307

Chapter 6 POSITIVE DEFINITE MATRICES 311

6.1 Minima, Maxima, and Saddle Points 311

6.2 Tests for Positive Definiteness 318

6.3 Singular Value Decomposition 331

6.4 Minimum Principles 339

6.5 The Finite Element Method 346

Chapter 7 COMPUTATIONS WITH MATRICES 351

7.1 Introduction 351

7.2 Matrix Norm and Condition Number 352

7.3 Computation of Eigenvalues 359

7.4 Iterative Methods for Ax = b 367

Chapter 8 LINEAR PROGRAMMING AND GAME THEORY 377

8.1 Linear Inequalities 377

8.2 The Simplex Method 382

8.3 The Dual Problem 392

8.4 Network Models 401

8.5 Game Theory 408

Appendix A INTERSECTION, SUM, AND PRODUCT OF SPACES 415

Appendix B THE JORDAN FORM 422

Solutions to Selected Exercises 428

Matrix Factorizations 474

Glossary 476

MATLAB Teaching Codes 481

Index 482

Linear Algebra in a Nutshell 488

购买PDF格式(14分)
返回顶部