点此搜书

加性数论  逆问题与和集几何
  • 作 者:(美)纳森著
  • 出 版 社:北京:世界图书北京出版公司
  • 出版年份:2012
  • ISBN:9787510044083
  • 标注页数:295 页
  • PDF页数:310 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

10

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源310 ≥295页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

1 Simple inverse theorems 1

1.1 Direct and inverse problems 1

1.2 Finite arithmetic progressions 7

1.3 An inverse problem for distinct summands 13

1.4 A special case 18

1.5 Small sumsets:The case |2A| ?3k-4 21

1.6 Application:The number of sums and products 29

1.7 Application:Sumsets and powers of2 31

1.8 Notes 33

1.9 Exercises 35

2 Sums of congruence classes 41

2.1 Addition in groups 41

2.2 The e-transform 42

2.3 The Cauchy-Davenport theorem 43

2.4 The Erd?s-Ginzburg-Ziv theorem 48

2.5 Vosper's theorem 52

2.6 Application:The range ofa diagonal form 57

2.7 Exponential sums 62

2.8 The Freiman-Vosper theorem 67

2.9 Notes 73

2.10 Exercises 74

3 Sums of distinct congruence classes 77

3.1 The Erd?s-Heilbronn conjecture 77

3.2 Vaodermonde determinants 78

3.3 Multidimensional ballot numbers 81

3.4 A review oflinear algebra 89

3.5 Alternating products 92

3.6 Erd?s-Heilbronn,concluded 95

3.7 The polynomial method 98

3.8 Erd?s-Heilbronn via polynomials 101

3.9 Notes 106

3.10 Exercises 107

4 Kneser's theorem for groups 109

4.1 Periodic subsets 109

4.2 The addition theorem 110

4.3 Application:The sum oftwo sets ofintegers 117

4.4 Application:Basesforfiniteandσ-finite groups 127

4.5 Notes 130

4.6 Exercises 131

5 Sums of vectors in Euclidean space 133

5.1 Sinail sumsets and hyperplanes 133

5.2 Linearly independent hyperplanes 135

5.3 Blocks 142

5.4 Proofofthe theorem 152

5.5 Notes 163

5.6 Exercises 163

6 Geometry of numbers 167

6.1 Lattices and determinants 167

6.2 Convex bodies and Minkowski's FirstTheorem 174

6.3 Application:Sums offour squares 177

6.4 Successive minima and Minkowski's second theorem 180

6.5 Bases for sublattices 185

6.6 Torsion-free abelian groups 190

6.7 An important example 194

6.8 Notes 196

6.9 Exercises 196

7 Pliinnecke's inequality 201

7.1 Pliinnecke graphs 201

7.2 Examples ofPlüinnecke graphs 203

7.3 Multiplicativityofmagnification ratios 205

7.4 Menger's theorem 209

7.5 Pliinnecke's inequality 212

7.6 Application:Estimates for sumsets in groups 217

7.7 Application:Essential components 221

7.8 Notes 226

7.9 Exercises 227

8 Freiman's theorem 231

8.1 Multidimensional arithmetic progressions 231

8.2 Freiman isomorphisms 233

8.3 Bogolyubov's method 238

8.4 Ruzsa's proof,concluded 244

8.5 Notes 251

8.6 Exercises 252

9 Applications of Freiman's theorem 255

9.1 Combinatorial number theory 255

9.2 Small sumsets and long progressions 255

9.3 The regularity iemma 257

9.4 Tbe Balog-Szemer?di theorem 270

9.5 A conjecture ofErd?s 277

9.6 The proper conjecture 278

9.7 Notes 279

9.8 Exercises 280

References 283

Index 292

购买PDF格式(10分)
返回顶部