购买云解压PDF图书

当前位置: Introduction To Topology > 购买云解压PDF图书
Introduction To Topology
  • 作 者:Solomon Lefschetz
  • 出 版 社:Princeton University Press
  • 出版年份:1949
  • ISBN:
  • 注意:在使用云解压之前,请认真核对实际PDF页数与内容!

在线云解压

价格(点数)

购买连接

说明

转为PDF格式

9

立即购买

(在线云解压服务)

云解压服务说明

1、本站所有的云解压默认都是转为PDF格式,该格式图书只能阅读和打印,不能再次编辑。

云解压下载及付费说明

1、所有的电子图书云解压均转换为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、云解压在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

Introduction,a Survey of Some Topological Concepts 3

1.Theory of Sets.Topological Spaces 3

2.Questions Related to Curves 5

3.Polyhedra 8

4.Coincidences and Fixed Points 14

5.Vector Fields 17

6.Integration and Topology 19

Chapter Ⅰ.Basic Information about Sets,Spaces,Vectors,Groups 26

1.Questions of Notation and Terminology 26

2.Euclidean Spaces,Metric Spaces,Topological Spaces 28

3.Compact Spaces 34

4.Vector Spaces 38

5.Products of Sets,Spaces and Groups.Homotopy 40

Problems 43

Chapter Ⅱ.Two-dimensional Polyhedral Topology 45

1.Elements of the Theory of Complexes.Geometric Consideration 45

2.Elements of the Theory of Complexes.Modulo Two Theory 50

3.The Jordan Curve Theorem 61

4.Proof of the Jordan Curve Theorem 65

5.Some Additional Properties of Complexes 68

6.Closed Surfaces.Generalities 72

7.Closed Surfaces.Reduction to a Normal Form 83

Problems 84

Chapter Ⅲ.Theory of Complexes 86

1.Intuitive Approach 86

2.Simplexes and Simplicial Complexes 87

3.Chains,Cycles,Homology Groups 89

4.Geometric Complexes 95

5.Calculation of the Betti Numbers.The Euler-Poincaré Characteristic 99

6.Relation between Connectedness and Homology 103

7.Circuits 105

Problems 107

Chapter Ⅳ.Transformations of Complexes.Simplicial Approximations and Related Questions 110

1.Set-transformations.Chain-mappings 110

2.Derivation 112

3.The Brouwer Fixed Point Theorem 117

4.Simplicial Approximation 119

5.The Brouwer Degree 124

6.Hopf's Classification of Mappings of n-spheres on n-spheres 132

7.Some Theorems on the Sphere 134

Problems 140

Chapter Ⅴ.Further Properties of Homotopy.Fixed Points.Fundamental Group.Homotopy Groups 142

1.Homotopy of Chain-mappings 142

2.Homology in Polyhedra.Relation to Homotopy 148

3.The Lefschetz Fixed Point Theorem for Polyhedra 153

4.The Fundamental Group 157

5.The Homotopy Groups 170

Problems 180

Chapter Ⅵ.Introduction to Manifolds.Duality Theorems 183

1.Differentiable and Other Manifolds 183

2.The Poincare Duality Theorem 188

3.Relative Homology Theory 195

4.Relative Manifolds and Related Duality Theory(Elementary Theory).Alexander's Duality Theorem 202

Problems 206

Bibliography 208

List of Symbols 211

Index 213

购买PDF格式(9分)
返回顶部