
- 作 者:Yehuda Pinchover and Jacob Rubinstein
- 出 版 社:Cambridge University Press.
- 出版年份:2005
- ISBN:
- 标注页数:371 页
- PDF页数:381 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源381 ≥371页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
1 Introduction 1
1.1 Preliminaries 1
1.2 Classification 3
1.3 Differential operators and the superposition principle 3
1.4 Differential equations as mathematical models 4
1.5 Associated conditions 17
1.6 Simple examples 20
1.7 Exercises 21
2 First-order equations 23
2.1 Introduction 23
2.2 Quasilinear equations 24
2.3 The method of characteristics 25
2.4 Examples of the characteristics method 30
2.5 The existence and uniqueness theorem 36
2.6 The Lagrange method 39
2.7 Conservation laws and shock waves 41
2.8 The eikonal equation 50
2.9 General nonlinear equations 52
2.10 Exercises 58
3 Second-order linear equations in two indenpendent variables 64
3.1 Introduction 64
3.2 Classification 64
3.3 Canonical form of hyperbolic equations 67
3.4 Canonical form of parabolic equations 69
3.5 Canonical form of elliptic equations 70
3.6 Exercises 73
4 The one-dimensional wave equation 76
4.1 Introduction 76
4.2 Canonical form and general solution 76
4.3 The Cauchy problem and d'Alembert's formula 78
4.4 Domain of dependence and region of influence 82
4.5 The Cauchy problem for the nonhomogeneous wave equation 87
4.6 Exercises 93
5 The method of separation of variables 98
5.1 Introduction 98
5.2 Heat equation: homogeneous boundary condition 99
5.3 Separation of variables for the wave equation 109
5.4 Separation of variables for nonhomogeneous equations 114
5.5 The energy method and uniqueness 116
5.6 Further applications of the heat equation 119
5.7 Exercises 124
6 Sturm-Liouville problems and eigenfunction expansions 130
6.1 Introduction 130
6.2 The Sturm-Liouville problem 133
6.3 Inner product spaces and orthonormal systems 136
6.4 The basic properties of Sturm-Liouville eigenfunctions and eigenvalues 141
6.5 Nonhomogeneous equations 159
6.6 Nonhomogeneous boundary conditions 164
6.7 Exercises 168
7 Elliptic equations 173
7.1 Introduction 173
7.2 Basic properties of elliptic problems 173
7.3 The maximum principle 178
7.4 Applications of the maximum principle 181
7.5 Green's identities 182
7.6 The maximum principle for the heat equation 184
7.7 Separation of variables for elliptic problems 187
7.8 Poisson's formula 201
7.9 Exercises 204
8 Green's functions and integral representations 208
8.1 Introduction 208
8.2 Green's function for Dirichlet problem in the plane 209
8.3 Neumann's function in the plane 219
8.4 The heat kernel 221
8.5 Exercises 223
9 Equations in high dimensions 226
9.1 Introduction 226
9.2 First-order equations 226
9.3 Classification of second-order equations 228
9.4 The wave equation in R2 and R3 234
9.5 The eigenvalue problem for the Laplace equation 242
9.6 Separation of variables for the heat equation 258
9.7 Separation of variables for the wave equation 259
9.8 Separation of variables for the Laplace equation 261
9.9 Schrodinger equation for the hydrogen atom 263
9.10 Musical instruments 266
9.11 Green's functions in higher dimensions 269
9.12 Heat kernel in higher dimensions 275
9.13 Exercises 279
10 Variational methods 282
10.1 Calculus of variations 282
10.2 Function spaces and weak formulation 296
10.3 Exercises 306
11 Numerical methods 309
11.1 Introduction 309
11.2 Finite differences 311
11.3 The heat equation: explicit and implicit schemes, stability, consistency and convergence 312
11.4 Laplace equation 318
11.5 The wave equation 322
11.6 Numerical solutions of large linear algebraic systems 324
11.7 The finite elements method 329
11.8 Exercises 334
12 Solutions of odd-numbered problems 337
A.l Trigonometric formulas 361
A.2 Integration formulas 362
A.3 Elementary ODEs 362
A.4 Differential operators in polar coordinates 363
A.5 Differential operators in spherical coordinates 363
References 364
Index 366