
- 作 者:H.S.M.Coxeter and W.O.J.Moser
- 出 版 社:Springer-Verlag
- 出版年份:1957
- ISBN:
- 标注页数:155 页
- PDF页数:164 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源164 ≥155页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
1.Cyclic,Dicyclic and Metacyclic Groups 1
1.1 Generators and relations 1
1.2 Factor groups 2
1.3 Direct products 3
1.4 Automorphisms 5
1.5 Some well-known finite groups 6
1.6 Dicyclic groups 7
1.7 The quaternion groups 8
1.8 Cyclic extensions of cyclic groups 8
1.9 Groups of order less than 32 11
2.Systematic Enumeration of Cosets 12
2.1 Finding an abstract definition for a finite group 12
2.2 Examples 14
2.3 The corresponding permutations 17
2.4 Finding whether a given subgroup is normal 17
2.5 How an abstract definition determines a group 17
3.Graphs,Maps and Cayley Diagrams 18
3.1 Graphs 19
3.2 Maps 19
3.3 Cayley diagrams 21
3.4 Planar diagrams 23
3.5 Unbounded surfaces 24
3.6 Non-planar diagrams 28
3.7 SCHREIER'S coset diagrams 31
4.Abstract Crystallography 33
4.1 The cyclic and dihedral groups 33
4.2 The crystgallographic and non-crystallographic point groups 33
4.3 Groups generated by reflections 35
4.4 Subgroups of the reflection groups 38
4.5 The seventeen two-dimensional space groups 40
4.6 Subgroup relationships among the seventeen groups 51
5.Hyperbolic Tessellations and Fundamental Groups 52
5.1 Regular tessellations 52
5.2 The Petrie polygon 54
5.3 DYCK's groups 54
5.4 The fundamental group for a non-orientable surface,obtained as a group generated by glide-reflections 56
5.5 The fundamental region for an orientable surface,obtained as a group of translations 58
6.The Symmetric,Alternating,and other Special Groups 61
6.1 ARTIN's braid group 62
6.2 The symmetric group 63
6.3 The alternating group 66
6.4 The polyhedral groups 67
6.5 The binary polyhedral groups 68
6.6 MILLER's generalization of the polyhedral groups 71
6.7 A new generalization 76
6.8 BURNSIDE's problem 80
7.Modular and Linear Fractional Groups 83
7.1 Lattices and modular groups 83
7.2 Defining relations when n = 2 85
7.3 Defining relations when n ? 3 88
7.4 Linear fractiona groups 92
7.5 The groups LF (2,p) 93
7.6 The groups LF (2,2m) 96
7.7 The Hessian group and LF (3,3) 97
7.8 The first Mathieu group 98
8.Regular Maps 100
8.1 Automorphisms 100
8.2 Universal covering 102
8.3 Maps of type {4,4} on a torus 102
8.4 Maps of type {3,6} or {6,3} on a torus 106
8.5 Maps having specified holes 108
8.6 Maps having specified Petrie polygons 110
8.7 Maps having two faces 113
8.8 Maps on a two-sheeted Riemann surface 115
8.9 Symmetrical graphs 116
9.Groups Generated by Reflections 117
9.1 Reducible and irreducible grops 117
9.2 The graphical notation 117
9.3 Finite groups 118
9.4 A brief description of the individual groups 122
9.5 Commutator subgroups 124
9.6 Central quotient groups 126
9.7 Exponents and invariants 129
9.8 Infinite Euclidean groups 131
9.9 Infinite non-Euclidean groups 132
Tables 1-12 134
Bibliography 144
Index 152