
- 作 者:Ralph P.Boas and R.Creighton Buck
- 出 版 社:Springer-Verlag
- 出版年份:1958
- ISBN:
- 标注页数:77 页
- PDF页数:86 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源86 ≥77页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Chapter Ⅰ.Introduction 1
1.Generalities 1
2.Representation formulas with a kernel 4
3.The method of kernel expansion 10
4.Lidstone series 13
5.A set of Laguerre polynomials 16
6.Generalized Appell polynomials 17
Chapter Ⅱ.Representation of entire functions 21
7.General theory 21
8.Multiple expansions 24
9.Appell polynomials 28
(ⅰ)Bernoulli polynomials and generalizations 29
(ⅱ)A set of Laguerre polynomials 31
(ⅲ)Hermite polynomials 31
(ⅳ)Reversed Laguerre polynomials 32
(ⅴ)Reversed Rainville polynomials 32
10.Sheffer polynomials 33
(ⅵ)General difference polynomials 34
(ⅶ)Poisson-Charlier,Narumi and Boole polynomials 37
(ⅷ)Mittag-Leffler polynomials 38
(ⅸ)Abel interpolation series 38
(ⅹ)Laguerre polynomials 40
(ⅹⅰ)Angelescu polynomials 41
(ⅹⅱ)Denisyuk polynomials 41
(ⅹⅲ)Squared Hermite polynomials 41
(ⅹⅳ)Adhoc polynomials 41
(ⅹⅴ)Actuarial polynomials 42
11.More general polynomials 42
(ⅹⅵ)Special hypergeometric polynomials 43
(ⅹⅶ)Reversed Bessel polynomials 43
(ⅹⅷ)q-difference polynomials 44
(ⅹⅸ)Reversed Hermite polynomials 45
(ⅹⅹ)Rain ville polynomials 46
12.Polynomials not in generalized Appell form 46
Chapter Ⅲ.Representation of functions that are regular at the origin 47
13.Integral representations 47
14.Brenke polynomials 51
(ⅰ)Polynomials generated by A(w)(1-zw)-λ 52
(ⅱ)q-difference polynomials 54
15.More general polynomials 55
16.Polynomials generated by A(w)(1-zg(w))-λ 57
(ⅲ)Taylor series 57
(ⅳ)Lerch polynomials 57
(ⅴ)Gegenbauer polynomials 58
(ⅵ)Chebyshev polynomials 58
(ⅶ)Humbert polymomials 58
(ⅷ)Faber polynomials 59
17.Special hypergeometric polynomials 60
(ⅸ) Jacobi polynomials 60
18.Polynomials not in generalized Appell form 61
Chapter Ⅳ.Applications 66
19.Uniqueness theorems 66
20.Functional equations 67
Bibliography 71
Index 75