点此搜书

高等微积分  影印版
  • 作 者:(美)DavidM.Bressoud著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2009
  • ISBN:9787302214816
  • 标注页数:388 页
  • PDF页数:405 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

12

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源405 ≥388页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

1 F=ma 1

1.1 Prelude to Newton's Principia 1

1.2 Equal Area in Equal Time 5

1.3 The Law of Gravity 9

1.4 Exercises 16

1.5 Reprise with Calculus 18

1.6 Exercises 26

2 Vector Algebra 29

2.1 Basic Notions 29

2.2 The Dot Product 34

2.3 The Cross Product 39

2.4 Using Vector Algebra 46

2.5 Exercises 50

3 Celestial Mechanics 53

3.1 The Calculus of Curves 53

3.2 Exercises 65

3.3 Orbital Mechanics 66

3.4 Exercises 75

4 Differential Forms 77

4.1 Some History 77

4.2 Differential 1-Forms 79

4.3 Exercises 86

4.4 Constant Differential 2-Forms 89

4.5 Exercises 96

4.6 Constant Differential к-Forms 99

4.7 Prospects 105

4.8 Exercises 107

5 Line Integrals,Multiple Integrals 111

5.1 The Riemann Integral 111

5.2 Line Integrals 113

5.3 Exercises 119

5.4 Multiple Integrals 120

5.5 Using Multiple Integrals 131

5.6 Exercises 134

6 Linear Transformations 139

6.1 Basic Notions 139

6.2 Determinants 146

6.3 History and Comments 157

6.4 Exercises 158

6.5 Invertibility 163

6.6 Exercises 169

7 Differential Calculus 171

7.1 Limits 171

7.2 Exercises 178

7.3 Directional Derivatives 181

7.4 The Derivative 187

7.5 Exercises 197

7.6 The Chain Rule 201

7.7 Using the Gradient 205

7.8 Exercises 207

8 Integration by Pullback 211

8.1 Change of Variables 211

8.2 Interlude with Lagrange 213

8.3 Exercises 216

8.4 The Surface Integral 221

8.5 Heat Flow 228

8.6 Exercises 230

9 Techniques of Differential Calculus 233

9.1 Implicit Differentiation 233

9.2 Invertibility 238

9.3 Exercises 244

9.4 Locating Extrema 248

9.5 Taylor's Formula in Several Variables 254

9.6 Exercises 262

9.7 Lagrange Multipliers 266

9.8 Exercises 277

10 The Fundamental Theorem of Calculus 279

10.1 Overview 279

10.2 Independence of Path 286

10.3 Exercises 294

10.4 The Divergence Theorems 297

10.5 Exercises 310

10.6 Stokes'Theorem 314

10.7 Summary for R3 321

10.8 Exercises 323

10.9 Potential Theory 326

11 E=mc2 333

11.1 Prelude to Maxwell's Dynamical Theory 333

11.2 Flow in Space-Time 338

11.3 Electromagnetic Potential 345

11.4 Exercises 349

11.5 Special Relativity 352

11.6 Exercises 360

Appendices 361

A An Opportunity Missed 361

B Bibliography 365

C Clues and Solutions 367

Index 382

购买PDF格式(12分)
返回顶部