
- 作 者:(美)Landau,L.D.,(美)Lifshitz,E.M.著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:1999
- ISBN:7506242559
- 标注页数:170 页
- PDF页数:196 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源196 ≥170页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Ⅰ.THE EQUATIONS OF MOTION 1
1.Generalised co-ordinates 1
2.The principle of least action 2
3.Galileo's relativity principle 4
4.The Lagrangian for a free particle 6
5.The Lagrangian for a system of particles 8
Ⅱ.CONSERVATION LAWS 13
6.Energy 13
7.Momentum 15
8.Centre of mass 16
9.Angular momentum 18
0.Mechanical similarity 22
Ⅲ.INTEGRATION OF THE EQUATIONS OF MOTION 22
11.Motion in one dimension 25
12.Determination of the potential energy from the period of oscillation 27
13.The reduced mass 29
14.Motion in a central field 30
15.Kepler's problem 35
Ⅳ.COLLISIONS BETWEEN PARTICLES 41
16.Disintegration of particles 41
17.Elastic collisions 44
18.Scattering 48
19.Rutherford's formula 53
20.Small-angle scattering 55
Ⅴ.SMALL OSCILLATIONS 58
21.Free oscillations in one dimension 58
22.Foreed oscillations 61
23.Oscillations of systems with more than one degree offreedom 65
24.Vibrations of molecules 70
25.Damped oscillations 74
26.Forced oscillations under friction 77
27.Parametric resonance 80
28.Anharmonic oscillations 84
29.Resonance in non-linear oscillations 87
30.Motionin arapidly oscillatingfield 93
Ⅵ.MOTION OF A RIGID BODY 96
31.Angular velocity 96
32.The inertia tensor 98
33.Angular momentum of a rigid body 105
34.The equations of motion of a rigid body 107
35.Eulerian angles 110
36.Euler's equations 114
37.The asymmctrical top 116
38.Rigidbodies in contact 122
39.Motion in a non-inertial frame of reference 126
Ⅶ.THE CANONICAL EQUATIONS 131
40.Hamilton's equations 131
41.The Routhian 133
42.Poisson brackets 135
43.The action as a function ofthe co-ordinates 138
44.Maupertuis' principle 140
45.Canonical transformations 143
46.Liouville's theorem 146
47.The Hamilton-Jacobi equation 147
48.Separation of thevariables 149
49.Adiabatic invariants 154
50.Canonical variables 157
51.Accuracy of conservation of the adiabatic invariant 159
52.Conditionally periodic motion 162
Index 167