点此搜书

有限温度玻色凝聚气体=Bose-condensed gases at finite temperatures  英文版  影印本
  • 作 者:朱云乔著
  • 出 版 社:
  • 出版年份:2014
  • ISBN:
  • 标注页数:0 页
  • PDF页数:477 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

15

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源477 ≥0页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

1 Overview and introduction 1

1.1 Historical overview of Bose superfluids 9

1.2 Summary of chapters 12

2 Condensate dynamics at T=0 19

2.1 Gross-Pitaevskii(GP)equation 20

2.2 Bogoliubov equations for condensate fluctuations 28

3 Coupled equations for the condensate and thermal cloud 32

3.1 Generafized GP equation for the condensate 33

3.2 Boltzmann equation for the noncondensate atoms 39

3.3 Solutions in thermal equilibrium 43

3.4 Region of validity of the ZNG equations 46

4 Green's functions and self-energy approximations 54

4.1 Overview of Green's function approach 54

4.2 Nonequilibrium Green's functions in normal systems 58

4.3 Green's functions in a Bose-condensed gas 68

4.4 Classification of self-energy approximations 74

4.5 Dielectric formalism 79

5 The Beliaev and the time-dependent HFB approximations 81

5.1 Hartree-Fock-Bogoliubov self-energies 82

5.2 Beliaev self-energy approximation 87

5.3 Beliaev as time-dependent HFB 92

5.4 Density response in the Beliaev-Popov approximation 98

6 Kadanoff-Baym derivation of the ZNG equations 107

6.1 Kadanoff-Baym formalism for Bose superfluids 108

6.2 Hartree-Fock-Bogoliubov equations 111

6.3 Derivation of a kinetic equation with collisions 115

6.4 Collision integrals in the Hartree-Fock approximation 119

6.5 Generalized GP equation 122

6.6 Linearized collision integrals in collisionless theories 124

7 Kinetic equation for Bogoliubov thermal excitations 129

7.1 Generalized kinetic equation 130

7.2 Kinetic equation in the Bogoliubov-Popov approximation 135

7.3 Comments on improved theory 143

8 Static thermal cloud approximation 146

8.1 Condensate collective modes at finite temperatures 147

8.2 Phenomenological GP equations with dissipation 157

8.3 Relation to Pitaevskii's theory of superfluid relaxation 160

9 Vortices and vortex lattices at finite temperatures 164

9.1 Rotating frames of reference:classical treatment 165

9.2 Rotating frames of reference:quantum treatment 170

9.3 Transformation of the kinetic equation 174

9.4 Zaremba-Nikuni-Griffin equations in a rotating frame 176

9.5 Stationary states 179

9.6 Stationary vortex states at zero temperature 181

9.7 Equilibrium vortex state at finite temperatures 184

9.8 Nonequilibrium vortex states 187

10 Dynamics at finite temperatures using the moment method 198

10.1 Bose gas above TBEC 199

10.2 Scissors oscillations in a two-component superfiuid 204

10.3 The moment of inertia and superfluid response 220

11 Numerical simulation of the ZNG equations 227

11.1 The generalized Gross-Pitaevskii equation 228

11.2 Collisionless particle evolution 231

11.3 Collisions 237

11.4 Self-consistent equilibrium properties 248

11.5 Equilibrium collision rates 252

12 Simulation of collective modes at finite temperature 256

12.1 Equilibration 257

12.2 Dipole oscillations 260

12.3 Radial breathing mode 263

12.4 Scissors mode oscillations 270

12.5 Quadrupole collective modes 279

12.6 Transverse breathing mode 286

13 Landau damping in trapped Bose-condensed gases 292

13.1 Landau damping in a uniform Bose gas 293

13.2 Landau damping in a trapped Bose gas 298

13.3 Numerical results for Landau damping 303

14 Landau's theory of superfluidity 309

14.1 History of two-fluid equations 309

14.2 First and second sound 312

14.3 Dynamic structure factor in the two-fluid region 317

15 Two-fluid hydrodynamics in a dilute Bose gas 322

15.1 Equations of motion for local equilibrium 324

15.2 Equivalence to the Landau two-fluid equations 331

15.3 First and second sound in a Bose-condensed gas 339

15.4 Hydrodynamic modes in a trapped normal Bose gas 345

16 Variational formulation of the Landau two-fluid equations 349

16.1 Zilsel's variational formulation 350

16.2 The action integral for two-fluid hydrodynamics 356

16.3 Hydrodynamic modes in a trapped gas 359

16.4 Two-fluid modes in the BCS-BEC crossover at unitarity 370

17 The Landau-Khalatnikov two-fluid equations 371

17.1 The Chapman-Enskog solution of the kinetic equation 372

17.2 Deviation from local equilibrium 377

17.3 Equivalence to Landau-Khalatnikov two-fluid equations 387

17.4 The C12 collisions and the second viscosity coefficients 392

18 Transport coefficients and relaxation times 395

18.1 Transport coefficients in trapped Bose gases 396

18.2 Relaxation times for the approach to local equilibrium 405

18.3 Kinetic equations versus Kubo formulas 412

19 General theory of damping of hydrodynamic modes 414

19.1 Review of coupled equations for hydrodynamic modes 415

19.2 Normal mode frequencies 418

19.3 General expression for damping of hydrodynamic modes 420

19.4 Hydrodynamic damping in a normal Bose gas 424

19.5 Hydrodynamic damping in a superfluid Bose gas 428

Appendix A Monte Carlo calculation of collision rates 431

Appendix B Evaluation of transport coefficients:technical details 436

Appendix C Frequency-dependent transport coefficients 444

Appendix D Derivation of hydrodynamic damping formula 448

References 451

Index 459

购买PDF格式(15分)
返回顶部