

- 作 者:Richard S.Palais
- 出 版 社:
- 出版年份:2222
- ISBN:
- 标注页数:123 页
- PDF页数:128 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源128 ≥123页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Chapter Ⅰ.QUOTIENT MANIFOLDS DEFINED BY FOLIATIONS 1
1.Differentiable Manifolds 1
2.Foliations 5
3.The Continuation Theorem 10
4.Regularity 13
5.Quotient Manifolds 19
6.Factorization of Mappings 22
7.Projection-Like Mappings 25
8.The Uniqueness Theorem 28
9.Products of Quotient Manifolds 29
Chapter Ⅱ.LOCAL AND INFINITESIMAL TRANSFORMATION GROUPS 31
1.Notation 32
2.Elementary Definitions 32
3.'Factoring' a Transformation Group 37
4.The Infinitesimal Graph 38
5.The Local Existence Theorem 46
6.The Uniqueness Theorem 49
7.The Existence Theorem 52
Chapter Ⅲ.GLOBALIZABLE INFINITESIMAL TRANSFORMATION GROUPS 59
1.Globalizations 59
2.Univalent Infinitesimal Transformation Groups 62
3.Maximum Local Transformation Groups 65
4.The Principal Theorem 72
5.Proper Infinitesimal Transformation Groups 73
6.Uniform Infinitesimal Transformation Groups 76
7.R-transformation Groups 82
8.The Need for Non-Hausdorff Manifolds 85
9.Can Theorem XX Be Generalized? 87
Chapter Ⅳ.LIE TRANSFORMATION GROUPS 90
1.Two Theorems on Lie Groups 91
2.Infinitesimal Groups 93
3.Connected Lie Transformation Groups 97
4.Lie Transformation Groups 99
5.Tensor Structures and Their Automorphism Groups 106
Appendix to Chapter IV. 112
1.Compact-Open Topology 112
2.Making a Topology Locally Arcwise Connected 112
3.The Modified Compact-Open Topology 114
4.Weakening the Topology of a Lie Group 114
Fixed Notations 120
Terminological Index 121
References 123