点此搜书

离散数学引论  英文
  • 作 者:IanAnderson编著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2009
  • ISBN:9787302214823
  • 标注页数:200 页
  • PDF页数:213 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

8

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源213 ≥200页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

1.Counting and Binomial Coefficients 1

1.1 Basic Principles 1

1.2 Factorials 2

1.3 Selections 3

1.4 Binomial Coefficients and Pascal's Triangle 6

1.5 Selections with Repetitions 10

1.6 A Useful Matrix Inversion 13

2.Recurrence 19

2.1 Some Examples 19

2.2 The Auxiliary Equation Method 23

2.3 Generating Functions 26

2.4 Derangements 28

2.5 Sorting Algorithms 32

2.6 Catalan Numbers 34

3.Introduction to Graphs 43

3.1 The Concept of a Graph 43

3.2 Paths in Graphs 46

3.3 Trees 47

3.4 Spanning Trees 50

3.5 Bipartite Graphs 52

3.6 Planarity 54

3.7 Polyhedra 60

4.Travelling Round a Graph 69

4.1 Hamiltonian Graphs 69

4.2 Planarity and Hamiltonian Graphs 71

4.3 The Travelling Salesman Problem 74

4.4 Gray Codes 76

4.5 Eulerian Graphs 78

4.6 Eulerian Digraphs 81

5.Partitions and Colourings 89

5.1 Partitions of a Set 89

5.2 Stirling Numbers 91

5.3 Counting Functions 94

5.4 Vertex Colourings of Graphs 96

5.5 Edge Colourings of Graphs 99

6.The Inclusion-Exclusion Principle 107

6.1 The Principle 107

6.2 Counting Surjections 112

6.3 Counting Labelled Trees 113

6.4 Scrabble 114

6.5 The Ménage Problem 115

7.Latin Squares and Hall's Theorem 121

7.1 Latin Squares and Orthogonality 121

7.2 Magic Squares 125

7.3 Systems of Distinct Representatives 127

7.4 From Latin Squares to Affine Planes 131

8.Schedules and 1-Factorisations 137

8.1 The Circle Method 137

8.2 Bipartite Tournaments and 1-Factorisations of Kn,n 142

8.3 Tournaments from Orthogonal Latin Squares 145

9.Introduction to Designs 149

9.1 Balanced Incomplete Block Designs 149

9.2 Resolvable Designs 156

9.3 Finite Projective Planes 159

9.4 Hadamard Matrices and Designs 161

9.5 Difference Methods 165

9.6 Hadamard Matrices and Codes 167

Appendix 179

Solutions 183

Further Reading 195

Bibliography 197

Index 199

购买PDF格式(8分)
返回顶部