
- 作 者:ZdzislawBrzezniak,TomaszZastawniak编著
- 出 版 社:北京市:清华大学出版社
- 出版年份:2009
- ISBN:9787302214861
- 标注页数:225 页
- PDF页数:239 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源239 ≥225页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
1.Review of Probability 1
1.1 Events and Probability 1
1.2 Random Variables 3
1.3 Conditional Probability and Independence 8
1.4 Solutions 10
2.Conditional Expectation 17
2.1 Conditioning on an Event 17
2.2 Conditioning on a Discrete Random Variable 19
2.3 Conditioning on an Arbitrary Random Variable 22
2.4 Conditioning on a σ-Field 27
2.5 General Properties 29
2.6 Various Exercises on Conditional Expectation 31
2.7 Solutions 33
3.Martingales in Discrete Time 45
3.1 Sequences of Random Variables 45
3.2 Filtrations 46
3.3 Martingales 48
3.4 Games of Chance 51
3.5 Stopping Times 54
3.6 Optional Stopping Theorem 58
3.7 Solutions 61
4.Martingale Inequalities and Convergence 67
4.1 Doob's Martingale Inequalities 68
4.2 Doob's Martingale Convergence Theorem 71
4.3 Uniform Integrability and L1 Convergence of Martingales 73
4.4 Solutions 80
5.Markov Chains 85
5.1 First Examples and Definitions 86
5.2 Classification of States 101
5.3 Long-Time Behaviour of Markov Chains:General Case 108
5.4 Long-Time Behaviour of Markov Chains with Finite State Space 114
5.5 Solutions 119
6.Stochastic Processes in Continuous Time 139
6.1 General Notions 139
6.2 Poisson Process 140
6.2.1 Exponential Distribution and Lack of Memory 140
6.2.2 Construction of the Poisson Process 142
6.2.3 Poisson Process Starts from Scratch at Time t 145
6.2.4 Various Exercises on the Poisson Process 148
6.3 Brownian Motion 150
6.3.1 Definition and Basic Properties 151
6.3.2 Increments of Brownian Motion 153
6.3.3 Sample Paths 156
6.3.4 Doob's Maximal L2 Inequality for Brownian Motion 159
6.3.5 Various Exercises on Brownian Motion 160
6.4 Solutions 161
7.It? Stochastic Calculus 179
7.1 It? Stochastic Integral:Definition 180
7.2 Examples 189
7.3 Properties of the Stochastic Integral 190
7.4 Stochastic Differential and It? Formula 193
7.5 Stochastic Differential Equations 202
7.6 Solutions 209
Index 223