购买云解压PDF图书

当前位置: 齿轮故障 智能诊断技术 > 购买云解压PDF图书
齿轮故障  智能诊断技术
  • 作 者:陈志强,陈旭东,李川,梁明著
  • 出 版 社:北京:科学出版社
  • 出版年份:2018
  • ISBN:9787030587954
  • 注意:在使用云解压之前,请认真核对实际PDF页数与内容!

在线云解压

价格(点数)

购买连接

说明

转为PDF格式

8

立即购买

(在线云解压服务)

云解压服务说明

1、本站所有的云解压默认都是转为PDF格式,该格式图书只能阅读和打印,不能再次编辑。

云解压下载及付费说明

1、所有的电子图书云解压均转换为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、云解压在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

第1章 绪论 1

1.1 齿轮故障智能诊断概述 1

1.1.1 齿轮故障主要类型 2

1.1.2 齿轮故障诊断的发展过程 3

1.2 齿轮故障智能诊断的研究内容 5

1.2.1 齿轮故障机制研究 6

1.2.2 信号选择和检测机制研究 6

1.2.3 齿轮信号分析与处理方法研究 7

1.2.4 齿轮信号特征选择研究 7

1.2.5 齿轮故障诊断的智能决策方法研究 7

1.3 齿轮故障诊断方法 8

1.3.1 基于解析模型的齿轮故障诊断方法 8

1.3.2 基于信号分析与处理的齿轮故障诊断方法 8

1.3.3 基于知识的齿轮故障诊断方法 11

1.3.4 基于感知行为的齿轮故障诊断方法 15

1.4 小结 15

参考文献 15

第2章 齿轮故障信号的特征提取与选择 20

2.1 齿轮运行状态信号载体 20

2.1.1 振动信号 20

2.1.2 润滑油中颗粒信号 22

2.1.3 声发射信号 23

2.1.4 电流信号 24

2.1.5 温度信号 24

2.2 故障信号特征提取方法 25

2.2.1 信号的时域分析方法 25

2.2.2 信号的频域分析方法 30

2.2.3 信号的时频分析方法 35

2.3 齿轮故障信号的特征选择 41

2.3.1 特征选择概述 42

2.3.2 过滤式特征选择 44

2.3.3 封装式特征选择 45

2.3.4 嵌入式特征选择 48

2.4 小结 48

参考文献 48

第3章 基于广义同步挤压变换的齿轮故障识别 53

3.1 广义同步挤压变换原理 53

3.1.1 同步挤压变换 54

3.1.2 广义同步挤压变换 55

3.2 广义同步挤压变换在齿轮故障中的应用 56

3.2.1 基于广义同步挤压变换信号分析的齿轮箱故障诊断原理 56

3.2.2 仿真案例一 57

3.2.3 仿真案例二 64

3.2.4 实验测试 68

3.3 小结 73

参考文献 74

第4章 基于深度学习的齿轮箱故障识别 75

4.1 深度学习概述 75

4.1.1 浅层学习 75

4.1.2 深度学习基本思想 76

4.1.3 深度学习与神经网络 77

4.1.4 深度学习训练机制 77

4.1.5 深度学习的应用 78

4.2 深度学习的经典模型 79

4.2.1 自动编码器 79

4.2.2 稀疏自动编码器 82

4.2.3 受限玻尔兹曼机 83

4.2.4 深度信念网络 90

4.2.5 深度玻尔兹曼机 91

4.2.6 卷积神经网络 93

4.3 经典深度学习模型在齿轮箱故障识别中的应用 99

4.3.1 振动信号特征提取 100

4.3.2 实验平台 102

4.3.3 卷积神经网络实验评估 105

4.3.4 DBN、DBM、RBM和SAE实验评估 108

4.4 多模态深度支持向量机及其在齿轮箱故障诊断中的应用 116

4.4.1 高斯-伯努利深度玻尔兹曼机 117

4.4.2 基于多模态同源特征的高斯-伯努利深度玻尔兹曼机分类 118

4.4.3 支持向量机多模态融合 119

4.4.4 振动信号的多模态特征 121

4.4.5 齿轮箱故障诊断中的应用 123

4.4.6 实验评估 124

4.5 小结 127

参考文献 128

第5章 基于润滑油中磨损颗粒的齿轮箱故障诊断 132

5.1 油液中磨损颗粒信号中振动引发的干扰 132

5.2 颗粒信号中振动信号的分离和应用 133

5.2.1 基于积分变换的油中颗粒信号增强 134

5.2.2 基于小波变换的降噪和信号分离 136

5.2.3 积分和小波联合变换过程 137

5.2.4 振动信号灵敏度的比较实验 138

5.2.5 振动监控测试 145

5.3 基于积分增强经验模式分解和互相关重构的油中颗粒特征提取 147

5.3.1 经验模态分解 148

5.3.2 基于EMD和高通滤波器的趋势项去除 149

5.3.3 基于最大相关系数的信号重构 151

5.3.4 实验分析 155

5.4 基于最优分解小波变换的ODM信号增强方法 162

5.4.1 最优分解小波变换方法 162

5.4.2 实验测试 168

5.5 小结 174

参考文献 174

购买PDF格式(8分)
返回顶部