
- 作 者:Andreas Kirsch著
- 出 版 社:北京:世界图书出版公司
- 出版年份:2016
- ISBN:9787519202675
- 标注页数:307 页
- PDF页数:322 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源322 ≥307页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
1 Introduction and Basic Concepts 1
1.1 Examples of Inverse Problems 1
1.2 Ill-Posed Problems 9
1.3 The Worst-Case Error 13
1.4 Problems 20
2 Regularization Theory for Equations of the First Kind 23
2.1 A General Regularization Theory 24
2.2 Tikhonov Regularization 36
2.3 Landweber Iteration 41
2.4 A Numerical Example 43
2.5 The Discrepancy Principle of Morozov 46
2.6 Landweber's Iteration Method with Stopping Rule 51
2.7 The Conjugate Gradient Method 55
2.8 Problems 60
3 Regularization by Discretization 63
3.1 Projection Methods 63
3.2 Galerkin Methods 70
3.2.1 The Least Squares Method 73
3.2.2 The Dual Least Squares Method 75
3.2.3 The Bubnov-Galerkin Method for Coercive Operators 77
3.3 Application to Symm's Integral Equation of the First Kind 81
3.4 Collocation Methods 90
3.4.1 Minimum Norm Collocation 91
3.4.2 Collocation of Symm's Equation 95
3.5 Numerical Experiments for Symm's Equation 103
3.6 The Backus-Gilbert Method 110
3.7 Problems 118
4 Inverse Eigenvalue Problems 121
4.1 Introduction 121
4.2 Construction of a Fundamental System 123
4.3 Asymptotics of the Eigenvalues and Eigenfunctions 130
4.4 Some Hyperbolic Problems 140
4.5 The Inverse Problem 148
4.6 A Parameter Identification Problem 154
4.7 Numerical Reconstruction Techniques 158
4.8 Problems 164
5 An Inverse Problem in Electrical Impedance Tomography 167
5.1 Introduction 167
5.2 The Direct Problem and the Neumann-Dirichlet Operator 169
5.3 The Inverse Problem 172
5.4 The Factorization Method 177
5.5 Problems 188
6 An Inverse Scattering Problem 191
6.1 Introduction 191
6.2 The Direct Scattering Problem 195
6.3 Properties of the Far Field Patterns 206
6.4 Uniqueness of the Inverse Problem 218
6.5 The Factorization Method 225
6.6 Numerical Methods 235
6.6.1 A Simplified Newton Method 236
6.6.2 A Modified Gradient Method 240
6.6.3 The Dual Space Method 241
6.7 Problems 244
A Basic Facts from Functional Analysis 247
A.1 Normed Spaces and Hilbert Spaces 247
A.2 Orthonormal Systems 253
A.3 Linear Bounded and Compact Operators 255
A.4 Sobolev Spaces of Periodic Functions 261
A.5 Sobolev Spaces on the Unit Disc 268
A.6 Spectral Theory for Compact Operators in Hilbert Spaces 273
A.7 The Fréchet Derivative 277
B Proofs of the Results of Section 2.7 283
References 295
Index 305