点此搜书

高等学校教材  微积分  第2卷  英文版
  • 作 者:张宇,黄艳编
  • 出 版 社:哈尔滨:哈尔滨工业大学出版社
  • 出版年份:2016
  • ISBN:9787560358963
  • 标注页数:301 页
  • PDF页数:309 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

11

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源309 ≥301页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

Chapter 8 Differential Calculus of Multivariable Functions 1

8.1 Limits and Continuity of Multivariable Functions 1

8.2 Partial Derivatives and Higher-Order Partial Derivatives 8

8.3 Linear Approximations and Total Differentials 15

8.4 The Chain Rule 21

8.5 Implicit Differentiation 26

8.6 Applications of Partial Derivatives to Analytic Geometry 35

8.7 Extreme Values of Functions of Several Variables 41

8.8 Directional Derivatives and The Gradient Vector 53

8.9 Examples 57

Exercises 8 61

Chapter 9 Multiple Integrals 74

9.1 Double Integrals 74

9.2 Calculating Double Integrals 78

9.3 Calculating Triple Integrals 89

9.4 Concepts and Calculations of The First Type Curve Integral 101

9.5 The First Type Surface Integral 106

9.6 Application of Integrals 111

9.7 Examples 114

Exercises 9 119

Chapter 10 The Second Type Curve Integral,Surface Integral,and Vector Field 131

10.1 The Second Type Curve Integral 131

10.2 The Green's Theorem 140

10.3 Conditions for Plane Curve Integrals Being Independent of Path.Conserva-tive Fields 146

10.4 The Second Type Surface Integral 154

10.5 The Gauss Formula,The Flux and Divergence 162

10.6 The Stokes'Theorem,Circulation and Curl 170

10.7 Examples 177

Exercises 10 183

Chapter 11 Infinite Series 197

11.1 Convergence and Divergence of Infinite Series 198

11.2 The Discriminances for Convergence and Divergence of Infinite Series with Positive Terms 205

11.3 Series With Arbitrary Terms,Absolute Convergence 213

11.4 The Discriminances for Convergence of Improper Integral,Γ Function 218

11.5 Series with Function Terms,Uniform Convergence 223

11.6 Power Series 231

11.7 Expanding Functions as Power Series 240

11.8 Some Applications of The Power Series 253

11.9 Fourier Series 257

11.10 Examples 273

Exercises 11 277

Appendix Ⅳ Change of Variables in Multiple Integrals 293

Appendix Ⅴ Radius of Convergence of Power Series 300

购买PDF格式(11分)
返回顶部