点此搜书

DIFFERENTIAL FORMS WITH APPLICATIONS TO THE PHYSICAL SCIENCES
  • 作 者:HARLEY FLANDERS
  • 出 版 社:ACADEMIC PRESS
  • 出版年份:1963
  • ISBN:
  • 标注页数:203 页
  • PDF页数:212 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

9

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源212 ≥203页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

Ⅰ.Introduction 1

1.1.Exterior Differential Forms 1

1.2.Comparison with Tensors 2

Ⅱ.Exterior algebra 5

2.1.The Space of p-vectors 5

2.2.Determinants 7

2.3.Exterior Products 8

2.4.Linear Transformations 10

2.5.Inner Product Spaces 12

2.6.Inner Products of p-vectors 14

2.7.The Star Operator 15

2.8.Problems 17

Ⅲ.The Exterior Derivative 19

3.1.Differential Forms 19

3.2.Exterior Derivative 20

3.3.Mappings 22

3.4.Change of Coordinates 25

3.5.An Example from Mechanics 26

3.6.Converse of the Poincaré Lemma 27

3.7.An Example 30

3.8.Further Remarks 30

3.9.Problems 31

Ⅳ.Applications 32

4.1.Moving Frames in E3 32

4.2.Relation between Orthogonal and Skew-symmetric Matrices 35

4.3.The 6-dimensional Frame Space 37

4.4.The Laplacian,Orthogonal Coordinates 38

4.5.Surfaces 40

4.6.Maxwell's Field Equations 44

4.7.Problems 48

Ⅴ.Manifolds and Integration 49

5.1.Introduction 49

5.2.Manifolds 49

5.3.Tangent Vectors 53

5.4.Differential Forms 55

5.5.Euclidean Simplices 57

5.6.Chains and Boundaries 61

6.7.Integration of Forms 63

5.8.Stokes' Theorem 64

5.9.Periods and De Rham's Theorems 66

5.10.Surfaces; Some Examples 69

5.11.Mappings of Chains 71

5.12.Problems 73

Ⅵ.Applications in Euclidean space 74

6.1.Volumes in En 74

6.2.Winding Numbers,Degree of a Mapping 77

6.3.The Hopf Invariant 79

6.4.Linking Numbers,the Gauss Integral,Ampere's Law 79

Ⅶ.Applications to Differential Equations 82

7.1.Potential Theory 82

7.2.The Heat Equation 90

7.3.The Frobenius Integration Theorem 92

7.4.Applications of the Frobenius Theorem 102

7.5.Systems of Ordinary Equations 106

7.6.The Third Lie Theorem 108

Ⅷ.Applications to Differential Geometry 112

8.1.Surfaces(Continued) 112

8.2.Hypersurfaces 116

8.3.Riemannian Geometry,Local Theory 127

8.4.Riemannian Geometry,Harmonic Integrals 136

8.5.Affine Connection 143

8.6.Problems 148

Ⅸ.Application to Group Theory 150

9.1.Lie Groups 150

9.2.Examples of Lie Groups 151

9.3.Matrix Groups 153

9.4.Examples of Matrix Groups 154

9.5.Bi-invariant Forms 158

9.6.Problems 161

Ⅹ.Applications to Physics 163

10.1.Phase and State Space 163

10.2.Hamiltonian Systems 165

10.3.Integral-invariants 171

10.4.Brackets 179

10.5.Contact Transformations 183

10.6.Fluid Mechanics 188

10.7.Problems 193

BIBLIOGRAPHY 197

GLOSSARY OF NOTATION 199

INDEX 201

购买PDF格式(9分)
返回顶部