点此搜书

当前位置:复分析pdf电子书下载 > 数理化
复分析
  • 作 者:(美)加默兰著
  • 出 版 社:世界图书出版公司北京公司
  • 出版年份:2008
  • ISBN:7506292297
  • 标注页数:478 页
  • PDF页数:40227501 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

14

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源40227501 ≥478页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

FIRST PART 1

Chapter Ⅰ The Complex Plane and Elementary Functions 1

1. Complex Numbers 1

2. Polar Representation 5

3. Stereographic Projection 11

4. The Square and Square Root Functions 15

5. The Exponential Function 19

6. The Logarithm Function 21

7. Power Functions and Phase Factors 24

8. Trigonometric and Hyperbolic Functions 29

Chapter Ⅱ Analytic Functions 33

1. Review of Basic Analysis 33

2. Analytic Functions 42

3. The Cauchy-Riemann Equations 46

4. Inverse Mappings and the Jacobian 51

5. Harmonic Functions 54

6. Conformal Mappings 58

7. Fractional Linear Transformations 63

Chapter Ⅲ Line Integrals and Harmonic Functions 70

1. Line Integrals and Green's Theorem 70

2. Independence of Path 76

3. Harmonic Conjugates 83

4. The Mean Value Property 85

5. The Maximum Principle 87

6. Applications to Fluid Dynamics 90

7. Other Applications to Physics 97

Chapter Ⅳ Complex Integration and Analyticity 102

1. Complex Line Integrals 102

2. Fundamental Theorem of Calculus for Analytic Functions 107

3. Cauchy's Theorem 110

4. The Cauchy Integral Formula 113

5. Liouville's Theorem 117

6. Morera's Theorem 119

7. Goursat's Theorem 123

8. Complex Notation and Pompeiu's Formula 124

Chapter Ⅴ Power Series 130

1. Infinite Series 130

2. Sequences and Series of Functions 133

3. Power Series 138

4. Power Series Expansion of an Analytic Function 144

5. Power Series Expansion at Infinity 149

6. Manipulation of Power Series 151

7. The Zeros of an Analytic Function 154

8. Analytic Continuation 158

Chapter Ⅵ Laurent Series and Isolated Singularities 165

1. The Laurent Decomposition 165

2. Isolated Singularities of an Analytic Function 171

3. Isolated Singularity at Infinity 178

4. Partial Fractions Decomposition 179

5. Periodic Functions 182

6. Fourier Series 186

Chapter Ⅶ The Residue Calculus 195

1. The Residue Theorem 195

2. Integrals Featuring Rational Functions 199

3. Integrals of Trigonometric Functions 203

4. Integrands with Branch Points 206

5. Fractional Residues 209

6. Principal Values 212

7. Jordan's Lemma 216

8. Exterior Domains 219

SECOND PART 224

Chapter Ⅷ The Logarithmic Integral 224

1. The Argument Principle 224

2. Rouche's Theorem 229

3. Hurwitz's Theorem 231

4. Open Mapping and Inverse Function Theorems 232

5. Critical Points 236

6. Winding Numbers 242

7. The Jump Theorem for Cauchy Integrals 246

8. Simply Connected Domains 252

Chapter Ⅸ The Schwarz Lemma and Hyperbolic Geometry 260

1. The Schwarz Lemma 260

2. Conformal Self-Maps of the Unit Disk 263

3. Hyperbolic Geometry 266

Chapter Ⅹ Harmonic Functions and the Reflection Principle 274

1. The Poisson Integral Formula 274

2. Characterization of Harmonic Functions 280

3. The Schwarz Reflection Principle 282

Chapter Ⅺ Conformal Mapping 289

1. Mappings to the Unit Disk and Upper Half-Plane 289

2. The Riemann Mapping Theorem 294

3. The Schwarz-Christoffel Formula 296

4. Return to Fluid Dynamics 304

5. Compactness of Families of Functions 306

6. Proof of the Riemann Mapping Theorem 311

THIRD PART 315

Chapter Ⅻ Compact Families of Meromorphic Functions 315

1. Marty's Theorem 315

2. Theorems of Montel and Picard 320

3. Julia Sets 324

4. Connectedness of Julia Sets 333

5. The Mandelbrot Set 338

Chapter ⅩⅢ Approximation Theorems 342

1. Runge's Theorem 342

2. The Mittag-Leffler Theorem 348

3. Infinite Products 352

4. The Weierstrass Product Theorem 358

Chapter ⅩⅣ Some Special Functions 361

1. The Gamma Function 361

2. Laplace Transforms 365

3. The Zeta Function 370

4. Dirichlet Series 376

5. The Prime Number Theorem 382

Chapter ⅩⅤ The Dirichlet Problem 390

1. Green's Formulae 390

2. Subharmonic Functions 394

3. Compactness of Families of Harmonic Functions 398

4. The Perron Method 402

5. The Riemann Mapping Theorem Revisited 406

6. Green's Function for Domains with Analytic Boundary 407

7. Green's Function for General Domains 413

Chapter ⅩⅥ Riemann Surfaces 418

1. Abstract Riemann Surfaces 418

2. Harmonic Functions on a Riemann Surface 426

3. Green's Function of a Surface 429

4. Symmetry of Green's Function 434

5. Bipolar Green's Function 436

6. The Uniformization Theorem 438

7. Covering Surfaces 441

Hints and Solutions for Selected Exercises 447

References 469

List of Symbols 471

Index 473

购买PDF格式(14分)
返回顶部