- 作 者:
- 出 版 社:
- 出版年份:1932
- ISBN:
- 标注页数:622 页
- PDF页数:630 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源630 ≥622页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
CHAPTER Ⅰ ABSTRACT HILBERT SPACE AND ITS REALIZATIONS 1
1.The Concept of Space 1
2.Abstract Hilbert Space 2
3.Abstract Unitary Spaces 16
4.Linear Manifolds in Hilbert Space 18
5.Realizations of Abstract Hilbert Space 23
CHAPTER Ⅱ TRANSFORMATIONS IN HILBERT SPACE 33
1.Linear Transformations 33
2.Symmetric Transformations 49
3.Bounded Linear Transformations 53
4.Projections 70
5.Isometric and Unitary Transformations 76
6.Unitary Invariance 83
CHAPTER Ⅲ EXAMPLES OF LINEAR TRANSFORMATIONS 86
1.Infinite Matrices 86
2.Integral Operators 98
3.Differential Operators 112
4.Operators of Other Types 124
CHAPTER Ⅳ RESOLVENTS,SPECTRA,REDUCIBILITY 125
1.The Fundamental Problems 125
2.Resolvents and Spectra 128
8.Reducibility 150
CHAPTER Ⅴ SELF-ADJOINT TRANSFORMATIONS 155
1.Analytical Methods 155
2.Analytical Representation of the Resolvent 165
3.The Reducibility of the Resolvent 172
4.The Analytical Representation of a Self-Adjoint Transformation 180
5.The Spectrum of a Self-Adjoint Transformation 184
CHAPTER Ⅵ THE OPERATIONAL CALCULUS 198
1.The Radon-Stieltjes Integral 198
2.The Operational Calculus 221
CHAPTER Ⅶ THE UNITARY EQUIVALENCE OF SELF-ADJOINT TRANSFORMATIONS 242
1.Preparatory Theorems 242
2.Unitary Equivalence 247
3.Self-Adjoint Transformations with Simple Spectra 275
4.The Reducibility of Self-Adjoint Transformations 288
5.Reduction to Principal Axes 294
CHAPTER Ⅷ GENERAL TYPES OF LINEAR TRANSFORMATIONS 299
1.Permutability 299
2.Unitary Transformations 302
3.Normal Transformations 311
4.A Theorem on Factorization 331
CHAPTER Ⅸ SYMMETRIC TRANSFORMATIONS 334
1.The General Theory 334
2.Real Transformations 357
3.Approximation Theorems 365
CHAPTER Ⅹ APPLICATIONS 397
1.Integral Operators 397
2.Ordinary Differential Operators of the First Order 424
3.Ordinary Differential Operators of the Second Order 448
4.Jacobi Matrices and Allied Topics 530
Index 615