
- 作 者:PRENTICE-HALL
- 出 版 社:INC.
- 出版年份:1974
- ISBN:
- 标注页数:0 页
- PDF页数:439 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源439 ≥0页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
Chapter 1 Differentiable and Analytic Manifolds 1
1.1 Differentiable Manifolds 1
1.2 Analytic Manifolds 20
1.3 The Frobenius Theorem 25
1.4 Appendix 31
Exercises 35
Chapter 2 Lie Groups and Lie Algebras 41
2.1 Definition and Examples of Lie Groups 41
2.2 Lie Algebras 46
2.3 The Lie Algebra of a Lie Group 51
2.4 The Enveloping Algebra of a Lie Group 55
2.5 Subgroups and Subalgebras 57
2.6 Locally isomorphic Groups 61
2.7 Homomorphisms 67
2.8 The Fundamental Theorem of Lie 72
2.9 Closed Lie Subgroups and Homogeneous Spaces.Orbits and Spaces of Orbits 74
2.10 The Exponential Map 84
2.11 The Uniqueness of the Real Analytic Structure of a Real Lie Group 92
2.12 Taylor Series Expansions on a Lie Group 94
2.13 The Adjoint Representations of ?and G 101
2.14 The Differential of the Exponential Map 107
2.15 The Baker-Campbell-Hausdorff Formula 114
2.16 Lie’s Theory of Transformation Groups 121
Exercises 133
Chapter 3 Structure Theory 149
3.1 Review of Linear Algebra 149
3.2 The Universal Enveloping Algebra of a Lie Algebra 166
3.3 The Universal Enveloping Algebra as a Filtered Algebra 176
3.4 The Enveloping Algebra of a Lie Group 184
3.5 Nilpotent Lie Algebras 189
3.6 Nilpotent Analytic Groups 195
3.7 Solvable Lie Algebras 200
3.8 The Radical and the Nil Radical 204
3.9 Cartan’s Criteria for Solvability and Semisimplicity 207
3.10 Semisimple Lie Algebras 213
3.11 The Casimir Element 216
3.12 Some Cohomology 219
3.13 The Theorem of Weyl 222
3.14 The Levi Decomposition 224
3.15 The Analytic Group of a Lie Algebra 228
3.16 Reductive Lie Algebras 230
3.17 The Theorem of Ado 233
3.18 Some Global Results 238
Exercises 247
Chapter 4 Complex Semisimple Lie Algebras And Lie Groups:Structure and Representation 260
4.1 Cartan Subalgebras 260
4.2 The Representations of ??(2,C). 267
4.3 Structure Theory 273
4.4 The Classical Lie Algebras 293
4.5 Determination of the Simple Lie Algebras over C 305
4.6 Representations with a Highest Weight 313
4.7 Representations of Semisimple Lie Algebras 324
4.8 Construction of a Semisimple Lie Algebra from its Cartan Matrix 329
4.9 The Algebra of Invariant Polynomials on a Semisimple Lie Algebra 333
4.10 Infinitesimal Characters 337
4.11 Compact and Complex Semisimple Lie Groups 342
4.12 Maximal Tori of Compact Semisimple Groups 351
4.13 An Integral Formula 356
4.14 The Character Formula of H.Weyl 364
4.15 Appendix.Finite Reflection Groups 369
Exercises 387
Bibliography 417
Index 423