点此搜书

PARTIAL DIFFERENTIAL EQUATIONS AN INTRODUCTION
  • 作 者:BERNARD EPSTEIN
  • 出 版 社:INC.
  • 出版年份:1962
  • ISBN:
  • 标注页数:273 页
  • PDF页数:282 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

10

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源282 ≥273页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

CHAPTER 1.Some Preliminary Topics 1

1.Equicontinuous Families of Functions 1

2.The Weierstrass Approximation Theorem 4

3.The Fourier Integral 9

4.The Laplace Transform 13

5.Ordinary Differential Equations 17

6.Lebesgue Integration 25

7.Dini's Theorem 27

CHAPTER 2.Partial Differential Equations of First Order 28

1.Linear Equations in Two Independent Variables 28

2.Quasi-linear Equations 33

3.The General First-order Equation 36

CHAPTER 3.The Cauchy Problem 42

1.Classification of Equations with Linear Principal Parts 42

2.Characteristics 44

3.Canonical Forms 46

4.The Cauchy Problem for Hyperbolic Equations 48

5.The One-dimensional Wave Equation 53

6.The Riamann Function 55

7.Classification of Second-order Equations in Three or More Independent Variables 58

8.The Wave Equation in Two and Three Dimensions 60

9.The Legendre Transformation 65

CHAPTER 4.The Fredholm Alternative in Banach Spaces 69

1.Linear Spaces 69

2.Normed Linear Spaces 71

3.Banach Spaces 74

4.Linear Functionals and Linear Operators 76

5.The Fredholm Alternative 82

CHAPTER 5.The Fredholm Alternative Hilbert Spaces 90

1.Inner-product Spaces 90

2.Hilbert Spaces 95

3.Projections,Linear Functionals,Adjoint Operators 99

4.Hermitian and Completely Continuous Operators 104

5.The Fredholm Alternative 111

6.Integral Equations 118

7.Hermitian Kernels 121

8.Illustrative Example 127

CHAPTER 6.Elements of Potential Theory 130

1.Introduction 130

2.Laplace's Equation and Theory of Analytic Functions 131

3.Fundamental Solutions 133

4.The Mean-value Theorem 135

5.The Maximum Principle 136

6.Formulation of the Dirichlet Problem 138

7.Solution of the Dirichlet Problem for the Disc 139

8.The Converse of the Mean-value Theorem 146

9.Convergence Theorems 149

10.Strengthened Form of the Maximum Principle 152

11.Single and Double Layers 152

12.Poisson's Equation 157

CHAPTER 7.The Dirichlet Problem 167

1.Subharmonic Functions 167

2.The Method of Balayage 170

3.The Perron-Remak Method 176

4.The Method of Integral Equations 179

5.The Dirichlet Principle 183

6.The Method of Finite Differences 199

7.Conformal Mapping 211

CHAPTER 8.The Heat Equation 217

1.The Initial-value Problem for the Infinite Rod 217

2.The Simplest Problem for the Semi-infinite Rod 221

3.The Finite Rod 256

CHAPTER 9.Green's Functions and Separation of Variables 232

1.The Vibrating String 232

2.The Green's Function of the Operator d2/dx2 235

3.The Green's Function of a Second-order Differential Operator 237

4.Eigenfunction Expansions 239

5.A Generalized Wave Equation 241

6.Extension of the Definition of Green's Functions 243

SOLUTIONS TO SELECTED EXERCISES 253

SUGGESTIONS FOR FURTHER STUDY 267

INDEX 269

购买PDF格式(10分)
返回顶部