
- 作 者:STEPHEN H.FRIEDBERG,ARNOLD J.INSEL,LAWRENCE E.SPENCE
- 出 版 社:
- 出版年份:2222
- ISBN:0135370191
- 标注页数:514 页
- PDF页数:526 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源526 ≥514页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
1 VECTOR SPACES 1
1.1 Introduction 1
1.2 Vector Spaces 6
1.3 Subspaces 15
1.4 Linear Combinations and Systems of Linear Equations 22
1.5 Linear Dependence and Linear Independence 33
1.6 Bases and Dimension 37
1.7 Maximal Linearly Independent Subsets 52
Index of Definitions for Chapter 1 55
2 LINEAR TRANSFORMATIONS AND MATRICES 57
2.1 Linear Transformations,Null Spaces,and Ranges 58
2.2 The Matrix Representation of a Linear Transformation 69
2.3 Composition of Linear Transformations and Matrix Multiplication 75
2.4 Invertibility and Isomorphisms 87
2.5 The Change of Coordinate Matrix 96
2.6 Dual Spaces 103
2.7 Homogeneous Linear Differential Equations with Constant Coefficients 110
Index of Definitions for Chapter 2 127
3 ELEMENTARY MATRIX OPERATIONS AND SYSTEMS OF LINEAR EQUATIONS 129
3.1 Elementary Matrix Operations and Elementary Matrices 130
3.2 The Rank of a Matrix and Matrix Inverses 135
3.3 Systems of Linear Equations—Theoretical Aspects 149
3.4 Systems of Linear Equations—Computational Aspects 161
Index of Definitions for Chapter 3 169
4 DETERMINANTS 171
4.1 Determinants of Order 2 172
4.2 Determinants of Order n 182
4.3 Properties of Determinants 190
4.4 The Classical Adjoint and Cramer’s Rule 203
4.5 Summary—Important Facts about Determinants 208
Index of Definitions for Chapter 4 215
5 DIAGONALIZATION 216
5.1 Eigenvalues and Eigenvectors 217
5.2 Diagonalizability 233
5.3 Matrix Limits and Markov Chains 252
5.4 Invariant Subspaces 280
5.5 The Cayley-Hamilton Theorem 287
5.6 The Minimal Polynomial 293
Index of Definitions for Chapter 5 300
6 CANONICAL FORMS 302
6.1 Generalized Eigenvectors 302
6.2 Jordan Canonical Form 319
6.3 Rational Canonical Form 339
Index of Definitions for Chapter 6 357
7 INNER PRODUCT SPACES 358
7.1 Inner Products and Norms 358
7.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Complements 367
7.3 The Adjoint of a Linear Operator 375
7.4 Einstein’s Special Theory of Relativity 380
7.5 Normal and Self-Adjoint Operators 393
7.6 Conditioning and the Rayleigh Quotient 400
7.7 Unitary and Orthogonal Operators and Their Matrices 408
7.8 The Geometry of Orthogonal Operators 420
7.9 Orthogonal Projections and the Spectral Theorem 429
7.10 Least Squares Approximation 436
7.11 Bilinear and Quadratic Forms 441
Index of Definitions for Chapter 7 466
APPENDICES 468
A Sets 468
B Functions 470
C Fields 472
D Complex Numbers 475
E Polynomials 479
ANSWERS TO SELECTED EXERCISES 488
LIST OF FREQUENTLY USED SYMBOLS 505
INDEX OF THEOREMS 506
INDEX 508