点此搜书

Metric Methods in Finsler Spaces and in The Foundations of Geometry
  • 作 者:
  • 出 版 社:Princeton University Press
  • 出版年份:1942
  • ISBN:
  • 标注页数:243 页
  • PDF页数:251 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

9

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源251 ≥243页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

Chapter Ⅰ.METRIC SPACES WITH GEODESICS 1

1.Metric Spaces;Notations 1

2.The Basic Axioms 11

3.Geodesics 17

4.Topological Structure of One- and Two- dimensional Spaces With Axioms A - D 24

Chapter Ⅱ.METRIC CONDITIONS FOR FINSLER SPACES 30

1.Convex Surfaces and Minkowski Metrics 31

2.Riemann Spaces and Finsler Spaces 40

3.Condition Δ(P) and the Definition of the Local Metric 47

4.Equivalence of the Local Metric with the Original Metric,and its Convexity 53

5.The Minkowskian Character of the Local Metric 57

6.The Continuity of the Local Metric 63

Chapter Ⅲ.PROPERTIES OF GENERAL S.L.SPACES(Spaces with a unique geodesic through any two points) 72

1.Axiom E.Shape of the Geodesics 73

2.Two Dimensional S.L.Spaces 79

3.The Inverse Problem for the Euclidean Plane 89

4.Asymptotes and Limit Spheres 98

5.Examples on Asymptotes and Limit Spheres The Parallel Axioms 105

6.Desarguesian Spaces 113

Chapter Ⅳ.SPACES WITH CONVEX SPHERES 119

1.The Convexity Condition 120

2.Characterization of the Higher Dimensional Elliptic Geometry 124

3.Perpendiculars in Spaces with Spheres of Order 2 132

4.Perpendiculars and Baselines in Open S.L.Spaces 139

5.Definition and Properties of Limit Bisectors 146

6.Characterizations of the Higher Dimensional Minkowskian and Euclidean Geometries 154

7.Plane Minkowskian Geometries 160

8.Characterization of Absolute Geometry 168

Chapter Ⅴ.MOTIONS 175

1.Definition of Motions.Involutoric Motions in S.L.Spaces 176

2.Free Movability 184

3.Example of a Non-homogeneous Riemann Space in which Congruent Pairs of Points Can be Moved into Each Other 192

4.Translations Along g and the Asymptotes to g 198

5.Quasi-hyperbolic Metrics 208

6.Translations Along Non-parallel Lines and in Closed Planes 214

7.Plane Geometries with a Transitive Group of Motions 220

8.Transitive Abelian Groups of Motions in Higher Dimensional Spaces 228

9.Some Problems Regarding S.L.Spaces and Other Spaces 232

Literature 235

Index 240

购买PDF格式(9分)
返回顶部