
- 作 者:Scott V. Burger著
- 出 版 社:北京:中国电力出版社
- 出版年份:2018
- ISBN:9787519825850
- 注意:在使用云解压之前,请认真核对实际PDF页数与内容!
在线云解压
价格(点数)
购买连接
说明
转为PDF格式
9
(在线云解压服务)
云解压服务说明
1、本站所有的云解压默认都是转为PDF格式,该格式图书只能阅读和打印,不能再次编辑。
云解压下载及付费说明
1、所有的电子图书云解压均转换为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、云解压在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
前言 1
第1章 什么是模型? 5
算法与模型有什么不同? 10
术语说明 12
模型的局限性 13
建模中的统计与计算 15
数据训练 16
交叉验证 17
为什么使用R语言? 18
优点 19
缺点 22
小结 23
第2章 监督学习与无监督机器学习 25
监督模型 26
回归 26
训练数据与测试数据 28
分类 30
混合方法 37
无监督学习 47
无监督聚类方法 48
小结 50
第3章 R语言中的采样统计和模型训练 52
偏差 53
R语言中的采样 58
训练与测试 61
交叉验证 74
小结 76
第4章 全面解析回归 78
线性回归 79
多项式回归 88
拟合数据的优点——过度拟合的风险 95
逻辑回归 98
小结 112
第5章 全面解析神经网络 115
单层神经网络 115
用R语言建立一个简单的神经网络 116
多层神经网络 125
回归神经网络 131
神经网络分类 136
使用caret的神经网络 137
小结 139
第6章 基于树的方法 141
简单的树模型 141
决定树的分割方式 143
决策树的优点和缺点 147
条件推理树 158
随机森林 161
小结 164
第7章 其他高级方法 165
朴素贝叶斯分类 165
主成分分析 169
支持向量机 179
k最近邻算法 185
小结 191
第8章 使用caret包实现机器学习 192
泰坦尼克号数据集 193
使caret 196
小结 207
附录A caret机器学习模型大全 209