点此搜书

当前位置:复变函数pdf电子书下载 > 数理化
复变函数
  • 作 者:孙利祥主编
  • 出 版 社:上海:复旦大学出版社
  • 出版年份:1995
  • ISBN:7309014782
  • 标注页数:258 页
  • PDF页数:268 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

10

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源268 ≥258页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

前言 1

第一章 复数 1

1.1 复数及其平面表示 1

1.复数概念 1

2.复数的平面表示 1

1.2 复数的运算 5

1.加法和减法 5

2.乘法和除法 6

1.3 复数的球面表示与无穷远点 13

习题 16

1.基本概念 19

2.1 复平面点集 19

第二章 复变函数 19

2.复数序列的极限 21

3.曲线与区域 25

2.2 复变函数的概念与表示法 31

1.复变函数的概念 31

2.复变函数的表示法 34

2.3 复变函数的极限 39

2.4 复变函数的连续性 42

习题 45

第三章 解析函数 49

3.1 导数 49

3.3 Cauchy-Riemann方程 54

3.3 导数的几何意义 59

3.4 初等解析函数 63

1.幂函数w=zn(n为正整数) 63

2.指数函数w=θn 65

3.三角函数 68

4.双曲函数 71

5.根式函数w=?(z≠0,n是正整数,且n>1) 73

6.对数函数w=Lne 78

7.一般幂函数 82

8.一般指数函数 83

习题 85

1.积分的定义与计算 88

4.1 复变函数的积分 88

第四章 Cauchy(积分)定理与Cauchy(积分)公式 88

2.基本性质 90

3.计算举例 91

4.2 Cauchy(积分)定理 94

1.Cauchy(积分)定理 95

2.不定积分 102

4.3 Cauchy(积分)公式 104

1.Cauchy(积分)公式及其推论 105

2.Cauchy(积分)公式与积分计算 109

3.Cauchy(积分)公式的其他推论 112

4.4 调和函数 114

1.场的概念 119

4.5 平面向量场 119

2.流量与(速度)环量 120

3.源、汇、涡(点) 121

4.势函数与流函数 122

5.复势 123

习题 125

第五章 级数 129

5.1 函数项级数的基本性质 129

1.常数项级数 129

2.函数项级数的一致收敛性 132

3.Weierstrass定理 134

1.敛散性 137

5.2 幂级数 137

2.收敛半径 138

3.和函数的解析性 140

5.3 Taylor级数 142

1.解析函数的Taylor展式 142

2.零点的孤立性与内部唯一性定理 149

5.4 Laurent级数 153

1.解析函数的Laurent展式 153

2.孤立奇点 161

习题 167

6.1 留数定理 171

1.留数的定义与计算 171

第六章 留数 171

2.留数定理 177

6.2 辐角原理及其应用 181

1.对数留数 181

2.辐角原理 184

3.Rouch?定理 185

6.3 利用留数定理计算实积分 187

1.?f(x)dx型积分的计算 189

2.?R(sinθ,cosθ)dθ型积分的计算(其中R表示有理函数) 191

3.f(x)θ?dx(a>0)型积分的计算 193

习题 195

7.1 共形变换的性质 199

第七章 共形变换 199

7.2 分式线性变换 201

1.分式线性变换的性质 202

2.唯一确定分式线性变换的条件 207

3.一些典型区域的共形变换 212

7.3 几个常用函数实现的共形变换 218

1.幂函数w=za(a>0) 218

2.指数函数w=e? 224

3.Жуковский函数 227

4.Schwarz-Christoffel函数 235

7.4 Riemann存在定理与边界对应定理 238

习题 241

习题答案 245

购买PDF格式(10分)
返回顶部