
- 作 者:刘证译
- 出 版 社:北京:高等教育出版社
- 出版年份:1982
- ISBN:13010·0784
- 标注页数:334 页
- PDF页数:339 页
请阅读订购服务说明与试读!
订购服务说明
1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。
2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源339 ≥334页】
图书下载及付费说明
1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。
2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)
3、所有的电子图书都是原书直接扫描方式制作而成。
第二部分 泛函方程 1
第十二章 共轭方程 3
1. 关于逆算子的定理 3
2. 已给方程与其共轭方程之间的联系 11
第十三章 第二类泛函方程 22
1. 具有紧核的方程 22
2. 关于复赋范空间 32
3. 谱 38
4. 豫解式 44
5. Fredholm择一律 59
6. 对积分方程的应用 67
7. 紧算子的不变子空间·逼近问题 73
第十四章 近似方法的一般理论 78
1. 关于第二类方程的一般理论 79
2. 可化为第二类方程的方程 95
3. 对无限方程组的应用 99
4. 在积分方程中的应用 104
5. 对常微分方程的应用 115
6. 对椭圆型方程边值问题的应用 131
第十五章 最速下降法 138
1. 线性方程的解 138
2. 求紧算子的特征值 149
3. 对椭圆型微分方程的应用 155
4. 可微凸泛函的极小化 164
5. 有限维空间凸泛函的极小化 176
第十六章 不动点原理 183
1. Caccippoli-Banach原理 183
2. 预备定理 187
3. Schauder原理 196
4. 不动点原理的应用 201
5. Kakutani定理 211
第十七章 非线性算子的微分 219
1. 一阶导数 219
2. 二阶导数和双线性算子 229
3. 例子 238
4. 隐函数定理 246
第十八章 Newton法 257
1. P(x)=0型方程 257
2. Newton法收敛性定理的推论 274
3. Newton法对具体泛函方程的应用 285
4. 格-赋范空间中的Newton法 311
泛函分析及其相邻问题方面的专著 317
本书所使用的文献 321
术语索引 330
记号索引 333