点此搜书

傅里叶级数与广义函数论
  • 作 者:周锦诚著
  • 出 版 社:北京:科学出版社
  • 出版年份:1983
  • ISBN:13031·2202
  • 标注页数:210 页
  • PDF页数:214 页
  • 请阅读订购服务说明与试读!

文档类型

价格(积分)

购买连接

试读

PDF格式

9

立即购买

点击试读

订购服务说明

1、本站所有的书默认都是PDF格式,该格式图书只能阅读和打印,不能再次编辑。

2、除分上下册或者多册的情况下,一般PDF页数一定要大于标注页数才建议下单购买。【本资源214 ≥210页】

图书下载及付费说明

1、所有的电子图书为PDF格式,支持电脑、手机、平板等各类电子设备阅读;可以任意拷贝文件到不同的阅读设备里进行阅读。

2、电子图书在提交订单后一般半小时内处理完成,最晚48小时内处理完成。(非工作日购买会延迟)

3、所有的电子图书都是原书直接扫描方式制作而成。

第一章 周期广义函数 1

1. 关于函数项级数的回顾 2

2. 空间?(Rd)和Fourier级数 8

3. 周期广义函数 15

4. 用Fourier级数来刻划周期广义函数 18

5. 周期广义函数的Fourier级数表示 20

6. 广义函数的导数 24

7. 广义函数的结构 28

8. 广义函数与C∞函数的乘积 30

9. 广义函数的卷积 32

10. 应用:解偏微分方程 35

11. Sobolev空间 44

12. ?(Rd)的完备性定理 46

13. Banach-Steinhaus定理 48

习题 51

第二章 广义函数 57

1. 基本空间(Ω)和?(Ω) 58

2. 单位分解 59

3. 广义函数空间 63

4. 乘积和局部化原理 66

5. 广义函数的局部特征 69

6. 求导 72

7. ?(Ω)中的收敛概念 76

8. 广义函数的结构 83

9. 广义函数的阶 85

10. 空间L?(Ω)和Ljoc(Ω) 89

11. 有紧支集的广义函数空间 95

12. 卷积和正则化 98

13. 微分方程和卷积 104

14. 有锥形支集的广义函数和双曲型方程 109

15. Soholev空间 114

习题 118

第三章 Fourier变换 123

1. 引言 123

2. 空间?(Rd) 124

3. ?(Rd)上的Fourier变换 126

4. ?(Rd)的拓扑结构 133

5. ?(Rd)上的Fourier变换 135

6. 例 140

7. 缓增广义函数的特征 144

8. Fourier变换的计算 150

9. Laplace变换和Heaviside符号演算 152

习题 163

第四章 积分 169

1. 基本函数和正测度 169

2. L1的构造 175

3. P.P.收敛的概念和L1(A,μ)的完备性 179

4. 积分极限定理。Lebesgue定理 184

5. Fubini公式 186

6. 奇异积分 189

7. 集合测度观点下的积分 194

习题 195

附录1 Hilbert空间 197

附录2 局部凸拓扑向量空间 202

购买PDF格式(9分)
返回顶部